Skip to main content
Log in

Assessment of spatiotemporal variability and trend analysis of reference crop evapotranspiration for the southern region of Peninsular India

  • Recent Trends in the Application of Green Technologies and their Management
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Accurate estimation of reference evapotranspiration (ET0) is an essential requirement for water resource management and scheduling agricultural activities. Several empirical methods have been employed in estimating ET0 across diverse climate regimes over the past decades. In this study, the Python implementation for estimation of daily and monthly ET0 values of representative stations of ten agro-climatic zones of Karnataka from 1979 to 2014 using the standard FAO Penman-Monteith method was carried out. The assessment of temporal and spatial variability of monthly ET0 values across the various agro-climatic zones done by the various statistical measures revealed that the variation in spatial ET0 values was higher than temporal variation, indicating major difference in ET0 values was with respect to the stations rather than years under study. The nonparametric Mann-Kendall test conducted at 1% significance level on the annual ET0 values revealed a statistically significant increasing trend for all the ten stations during the study period. The trend test conducted on the climate variables like mean air temperature, wind speed, relative humidity, and solar radiation signifies their influence on the annual ET0 values. The magnitude changes in the trends detected by the Theil Sen’s slope indicated that increasing values of mean temperature, solar radiation, and decreasing values of relative humidity predominantly contributed to the annual upward trend in ET0 values for the 10 stations. A trivial impact of wind speed on annual ET0 values was observed for the stations. Kalburgi and Udupi stations exhibited a positive ET0 trend with the highest and lowest annual values among ten stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) “Crop evapotranspiration: guidelines for computing crop water requirements.” Irrigation and Drainage Paper No. 56, Food and Agricultural Organization of the United Nations, Rome

  • Azizzadeh M, Javan K (2015) Analyzing trends in reference evapotranspiration in northwest part of Iran. J Ecol Eng 16(2):1–12

    Article  Google Scholar 

  • Bandyopadhayay A, Bhadra A, Raghuwanshi NS, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14(5):508–518

    Article  Google Scholar 

  • Crawford CG, Hmh RM, and Slack JR (1983) Nonparametric tests for trends in water quality data using the statistical analysis system (SAS). Technical Report U. S. Geological Survey Open-File Repon 83-550, U. S. Government

  • Dinpashoh Y, Babamiri O (2020) Trends in reference crop evapotranspiration in Urmia Lake basin. Arab J Geosci 13:1–16

    Article  CAS  Google Scholar 

  • Djaman K, Ndiaye PM, Koudahe K, Bodian A, Diop L, O’Neill M, Irmak S (2018) Spatial and temporal trend in monthly and annual reference evapotranspiration in Madagascar for the 1980–2010 period. Int J Hydrol 2:110–120

    Article  Google Scholar 

  • Duhan D, Pandey A, Gahalaut KPS, Pandey RP (2013) Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Compt Rendus Geosci 345(1):3–21

    Article  Google Scholar 

  • Energy and Wetlands Research @ CES, IISc, Bangalore, India. (2005). Climate and Rainfall, from wgbis.ces.iisc.ernet.in/energy/paper/TR109/tr109_std2.htm. Accessed 27 Jul 2021

  • Espadafor M, Lorite IJ, Gavilán P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Manag 98(6):1045–1061

    Article  Google Scholar 

  • Gao ZD, He JS, Dong KB, Bian XD, Li X (2015) Sensitivity study of reference crop evapotranspiration during growing season in the West Liao River basin. Theor Appl Climatol, China. https://doi.org/10.1007/s00704-015-1453-7

  • Gao X, Peng S, Wang W, Xu J, Yang S (2016) Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: a case study in Guizhou Province, China. Meteorog Atmos Phys 128(5):677–688

    Article  Google Scholar 

  • Garg T, Kumar N, Chauhan T, Kango R (2016). Estimation of Reference Evapotranspiration using the FAO Penman-Monteith Method for Climatic Conditions of Himachal Pradesh, India. In Proceedings of National Conference: Civil Engineering Conference–Innovation for Sustainability (CEC–2016) (Vol. 9, p. 10th).

  • Gocic M, Trajkovic S (2014) Analysis of trends in reference evapotranspiration data in a humid climate. Hydrol Sci J 59(1):165–180

    Article  Google Scholar 

  • Goroshi S, Pradhan R, Singh RP, Singh KK, Parihar JS (2017) Trend analysis of evapotranspiration over India: observed from long-term satellite measurements. J Earth Syst Sci 126(8):1–21

    Article  CAS  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1-4):182–196

    Article  Google Scholar 

  • Heydari MM, Aghamajidi R, Beygipoor G, Heydari M (2014) Comparison and evaluation of 38 equations for estimating reference evapotranspiration in an arid region. Fresenius Environ Bull 23(8):1985–1996

    CAS  Google Scholar 

  • Jerin, J. N., Islam, H. T., Islam, A. R. M. T., Shahid, S., Hu, Z., Badhan, M. A., ... & Elbeltagi, A. (2021). Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theor Appl Climatol 144(1), 793-808.

  • Jhajharia D, Dinpashoh Y, Kahya E, Choudhary RR, Singh VP (2014a) Trends in temperature over Godavari River basin in southern peninsular India. Int J Climatol 34(5):1369–1384

    Article  Google Scholar 

  • Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri Fard A (2012) Trends in reference evapotranspiration in the humid region of northeast India. Hydrol Process 26(3):421–435

    Article  Google Scholar 

  • Jhajharia D, Singh VP, Kumar R, Choudhary RR (2014b) Searching evidence for the existence of evaporation paradox in arid environments of northwest India. Global NEST J 16(1):3–11

    Google Scholar 

  • Kendall MG (1975) Rank Correlation Methods. Charles Griffen, London ISBN, 195205723

    Google Scholar 

  • Łabędzki L, Kanecka-Geszke E, Bak B, Slowinska S (2011) Estimation of reference evapotranspiration using the FAO Penman-Monteith method for climatic conditions of Poland Evapotranspiration: InTech. https://doi.org/10.5772/14081

  • Łabedzki L, Bak B, Smarzynska K (2014) Spatio-temporal variability and trends of penman-monteith reference evapotranspiration (fao-56) in 1971-2010 under climatic conditions of Poland. Pol J Environ Stud 23(6):2083–2091

    Google Scholar 

  • Liu CM (2004) Study of some problems in water cycle changes of the Yellow River Basin. Adv Water Sci 15:608–614 (in Chinese)

    Google Scholar 

  • Liu R, Wen J, Wang X, Wang Z (2017) Validation of evapotranspiration and its long-term trends in the Yellow River source region. Journal of Water and Climate Change 8(3):495–509

    Article  Google Scholar 

  • Liu X, Zhang D (2013) Trend analysis of reference evapotranspiration in Northwest China: the roles of changing wind speed and surface air temperature. Hydrol Process 27(26):3941–3948

    Article  Google Scholar 

  • Liu Y, Wang Q, Yao X, Jiang Q, Yu J, Jiang W (2020) Variation in Reference Evapotranspiration over the Tibetan Plateau during 1961–2017: Spatiotemporal Variations, Future Trends and Links to Other Climatic Factors. Water 12(11):3178

    Article  Google Scholar 

  • Lopes A, Saraiva J, Alcoforado MJ (2011) Urban boundary layer wind speed reduction in summer due to urban growth and environmental consequences in Lisbon. Environ Model Softw 26:242–243

    Article  Google Scholar 

  • Lopez-Urrea R, de Santa Olalla FM, Fabeiro C, Moratalla A (2006) An evaluation of two hourly reference evapotranspiration equations for semiarid conditions. Agric Water Manag 86(3):277–282

    Article  Google Scholar 

  • Ma ZZ, Ray RL, He YP (2018) Assessing the spatiotemporal distributions of evapotranspiration in the Three Gorges Reservoir Region of China using remote sensing data. J Mt Sci 15(12):2676–2692

    Article  Google Scholar 

  • Mann HB (1945). Nonparametric tests against trend. Econometrica: J Econ Soc 245-259

  • McVicar TR, Roderick ML (2010) Atmospheric science: winds of change. Nat Geosci 3(11):747–748

    Article  CAS  Google Scholar 

  • Monia S, Jhajharia D (2016). Reference evapotranspiration: trends and identification of its meteorological variables in arid climate. In Micro Irrigation Management (pp. 53-70). Apple Academic Press.

  • Nandagiri L, Kovoor GM (2006) Performance evaluation of reference evapotranspiration equations across a range of Indian climates. J Irrig Drain Eng 132(3):238–249. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:3(238)

    Article  Google Scholar 

  • Ndiaye PM, Bodian A, Diop L, Deme A, Dezetter A, Djaman K, Ogilvie A (2020) Trend and sensitivity analysis of reference evapotranspiration in the Senegal River basin using NASA meteorological data. Water 12(7):1957

    Article  Google Scholar 

  • Pandey A, Pandey RP (2013) Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch Env Res Risk A 27(6):1407–1421

    Article  Google Scholar 

  • Pandey PK, Dabral PP, Pandey V (2016) Evaluation of reference evapotranspiration methods for the north eastern region of India. Int Soil Water Conserv Res 4(1):52–63. https://doi.org/10.1016/j.iswcr.2016.02.003

    Article  Google Scholar 

  • Poddar A, Gupta P, Kumar N, Shankar V, Ojha CSP (2018) Evaluation of reference evapotranspiration methods and sensitivity analysis of climatic parameters for sub-humid sub-tropical locations in western Himalayas (India). ISH J Hydraul Eng 27:1–11. https://doi.org/10.1080/09715010.2018.1551731

    Article  Google Scholar 

  • Pour SH, Abd Wahab AK, Shahid S, Ismail ZB (2020) Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos Res 246:105096

    Article  Google Scholar 

  • Mohan S (1991) Intercomparison of evapotranspiration estimates. Hydrol Sci J 36(5):447–460. https://doi.org/10.1080/02626669109492530

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour Manag 26(1):211–224

    Article  Google Scholar 

  • Soltani E, Soltani A (2008) Climatic change of Khorasan, north-east of Iran, during 1950–2004. Res J Environ Sci 2(5):316–322

    Article  Google Scholar 

  • Tabari H, Talaee PH (2011) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorog Atmos Phys 111(3):121–131

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31(2):107–117

    Article  Google Scholar 

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol 151(2):128–136

    Article  Google Scholar 

  • Tellen VA (2017) A comparative analysis of reference evapotranspiration from the surface of rainfed grass in Yaounde, calculated by six empirical methods against the penman-monteith formula. Earth Perspect 4(1):4

    Article  Google Scholar 

  • Tomas-Burguera M, Beguería S, Vicente-Serrano SM (2021) Climatology and trends of reference evapotranspiration in Spain. Int J Climatol 41:E1860–E1874

    Article  Google Scholar 

  • Wang P, Yamanaka T, Qiu GY (2012a) Causes of decreased reference evapotranspiration and pan evaporation in the Jinghe River catchment, Northern China. Environmentalist 32(1):10

    Article  Google Scholar 

  • Wang WG, Shao QX, Peng SZ, Xing WQ, Yang T, Luo YF, Yong B, Xu JZ (2012b) Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resour Res 48:W05530

    Article  Google Scholar 

  • Wang M, Zhang Y, Lu Y, Gong X, Gao L (2021). Detection and attribution of reference evapotranspiration change (1951–2020) in the Upper Yangtze River Basin of China. J Water Clim Change

  • Xie H, Zhu X (2013) Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrol Process 27(25):3685–3693

    Article  Google Scholar 

  • Xu CY, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 27:81–93

    Article  Google Scholar 

  • Yadav D, Awasthi MK, Nema RK (2017) Estimation of reference evapotranspiration using Aquacrop model for agro-climatic conditions of Madhya Pradesh. Indian J Agric Res 51

  • Yadav S, Deb P, Kumar S, Pandey V, Pandey PK (2016) Trends in major and minor meteorological variables and their influence on reference evapotranspiration for mid Himalayan region at east Sikkim, India. J Mt Sci 13(2):302–315

    Article  Google Scholar 

  • Zeng Z, Wu W, Zhou Y, Li Z, Hou M, Huang H (2019) Changes in reference evapotranspiration over Southwest China during 1960–2018: attributions and implications for drought. Atmosphere 10(11):705

    Article  Google Scholar 

  • Zhang X, Ren Y, Yin ZY, Lin Z, Zheng D (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res 114:D15105. https://doi.org/10.1029/2009JD011753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jayashree T R

Data collection and formal analysis: Jayashree T R

Methodology: Jayashree T R

Programming and Validation: Jayashree T R

Visualization: Jayashree T R

Supervision: Subba Reddy N V

Writing—original draft: Jayashree T R

Writing—review and editing: Dinesh Acharya U

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jayashree Tenkila Ramachandra.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors approved the final manuscript and agreed to its submission to the Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandra, J.T., Veerappa, S.R.N. & Udupi, D.A. Assessment of spatiotemporal variability and trend analysis of reference crop evapotranspiration for the southern region of Peninsular India. Environ Sci Pollut Res 29, 41953–41970 (2022). https://doi.org/10.1007/s11356-021-15958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15958-0

Key words

Navigation