Skip to main content
Log in

Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to many uses of zinc oxide nanoparticles (ZnO NPs) in various industries, the release of these particles in the environment and their effects on living organisms is inevitable. In this study, the role of salicylic acid (SA) pretreatments in modulating the toxicity of ZnO NPs was investigated using a hydroponic system. After pretreatment with different concentrations of SA (0, 25, 75, and 150 μM), Chenopodium murale plants were exposed to ZnO NPs (50 mg L−1). The results showed that exogenous SA increased the length, weight, chlorophyll, proline, starch, and soluble sugars in the plants. Besides, SA pretreatments improved water status in the plants treated with ZnO NPs. In SA-pretreated plants, increased activity of catalase (CAT), guaiacol peroxidase (GPX), and superoxide dismutase (SOD) was associated with a decline in electrolyte leakage (EL %) and membrane peroxidation. Under NPs stress, SA pretreatments increased the content of phenolic compounds by increasing the activity of phenylalanine ammonia-lyase (PAL). Exogenous SA reduced the translocation of larger amounts of Zn to the shoots, with more accumulation in the roots. This result can be used to produce healthy food from plants grown in environments contaminated with nanoparticles. It seems that all concentrations of SA reduced the symptoms of ZnO NPs toxicity in the plant by strengthening the function of the antioxidant system and increasing the content of some metabolites. Findings also suggest that SA pretreatment can compensate for the growth reduction caused by ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ABA:

Abscisic acid

BR:

Brassinosteroids

CAT:

Catalase

Chl:

Chlorophyll

EL:

Electrolyte leakage

DW:

Dry weight

FW:

Fresh weight

GA:

Gibberellic acid

GPX:

Guaiacol peroxidase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

PAL:

Phenylalanine ammonia-lyase

PSB:

Phosphate buffer

ROS:

Reactive oxygen species

RWC:

Relative water content

TBA:

Thiobarbituric acid

TFC:

Total flavonoid content

TPC:

Total phenol content

TCA:

Trichloroacetic acid

TW:

Turgid weight

SA:

Salicylic acid

SOD:

Superoxide dismutase

TF:

Translocation factor

ZnO NPs:

Zinc oxide nanoparticles

References

  • Abbasi BH, Ullaha MA, Nadeema M, Tungmunnithum D, Hano C (2020) Exogenous application of salicylic acid and gibberellic acid on biomass accumulation, antioxidant and anti-inflammatory secondary metabolites production in multiple shoot culture of Ajuga integrifolia Buch. Ham Ex DDon. Ind Crop Prod 145:112098

    Google Scholar 

  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S (2020) Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040

    CAS  Google Scholar 

  • Bahador E, Einali A, Azizian-Shermeh O, Sangtarash MH (2019) Metabolic responses of the green microalgae Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. Aquat Toxicol 217:105356

    CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic Zn onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515-516:60–69

    CAS  Google Scholar 

  • Bates S (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidase and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    CAS  Google Scholar 

  • Chaturvedi AK, Surendran U, Gopinath G, Chandran KM, Anjali NK (2019) Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agric Water Manag 222:92–104

    Google Scholar 

  • Dai LP, Xiong ZT, Hung Y, Li MJ (2006) Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ Toxicol 21:505–512

    CAS  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25(6):549–565

    CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method of determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Estaji A, Niknam F (2020) Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric Water Manag 234:106116

    Google Scholar 

  • Farooq MA, Niazib AK, Saifullah JA, Farooq M, Souri Z, Karimi N, Rengel Z (2019) Acquiring control: the evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem 141:353–369

    CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defenses of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defense and root-hair development through salicylic acid signaling. BMC Genomics 16:341–358

    Google Scholar 

  • Ghassemi-Golezani K, Hassanzadeh N, Shakiba MR, Esmaeilpour B (2020) Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatal Agric Biotechnol 26:101636

    Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    CAS  Google Scholar 

  • Gomes MP, Duarte DM, Carneiro MMLC, Barreto LC, Carvalho M, Soares AM, Guilherme LR, Garcia QS (2013) Zn tolerance modulation in Myracrodruon urundeuva plants. Plant Physiol Biochem 67:1–6

    CAS  Google Scholar 

  • Ha YM, Shang Y, Yang D, Nam KH (2018) Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun 504:143–148

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Google Scholar 

  • Iftikhar A, Ali S, Yasmeen T, Arif MS, Zubair M, Rizwan M, Alhaithloul HAS, Alayafi AAM, Soliman MH (2019) Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. Environ Pollut 254:113109

    CAS  Google Scholar 

  • Ignatenko A, Talanova V, Repkina N, Titov A (2019) Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant 41(6):80. https://doi.org/10.1007/s11738-019-2872-3

    Article  CAS  Google Scholar 

  • Jing C, Cheng Z, Li-ping L, Zhong-yang S, Xue-bo P (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19:44–49

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol Biochem 147:10–20

    CAS  Google Scholar 

  • Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250

    Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311

    Google Scholar 

  • Kumaraswamy RV, Kumari S, Choudhary RC, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2019) Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69

    CAS  Google Scholar 

  • Kumari A, Pandey-Rai S (2018) Enhanced arsenic tolerance, and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol Biochem 132:590–602

    CAS  Google Scholar 

  • La VH, Lee BR, Islam MT, Park SH, Jung HI, Bae DW, Kim TH (2019) Characterization of salicylic acid-mediated modulation of the drought stress responses: reactive oxygen species, proline, and redox state in Brassica napus. Environ Exp Bot 157:1–10

    CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lotfi R, Ghassemi-Golezani K, Pessarakli M (2020) Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatal Agric Biotechnol 26:101635

    Google Scholar 

  • Lu Q, Zhang T, Zhang W, Su C, Yang Y, Hu D, Xu Q (2018) Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicol Environ Saf 147:500–508

    CAS  Google Scholar 

  • Manquián-Cerda K, Escudey M, Zúñiga G, Arancibia-Miranda N, Molina M, Cruces E (2016) Effect of cadmium on phenolic compounds, antioxidant enzyme activity, and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol Environ Saf 133:316–326

    Google Scholar 

  • Michalak A (2010) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    CAS  Google Scholar 

  • Molnár Á, Papp M, Kovács DZ, Bélteky P, Oláh D, Feigl G, Szőllősi R, Rázga Z, Ördög A, Erdei L, Rónavári A, Kónya Z, Kolbert Z (2020) Nitro-oxidative signaling induced by chemically synthesized zinc oxide nanoparticles (ZnO NPs) in Brassica species. Chemosphere 251:126419

    Google Scholar 

  • Mosquera-Sánchez PA, Arciniegas-Grijalba MC, Patiño-Portela BE, Guerra-Arias JE, Muñoz-Florez JE, Rodríguez-Páez (2020) Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops L.P. Biocatal Agric Biotechnol 25:101579

    Google Scholar 

  • Ochoa-Alejo N, Gòmez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J Plant Physiol 141:147–152

    CAS  Google Scholar 

  • Osama S, Sherei ME, Al-Mahdy DA, Bishr M, Salama O (2019) Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind Crop Prod 134:1–10

    CAS  Google Scholar 

  • Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M, Jarmolowski A, Szweykowska-Kulinska Z (2013) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11(4):459–469

    CAS  Google Scholar 

  • Poor P, Gémes K, Horváth F, Szepesi A, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13(1):105–114

    CAS  Google Scholar 

  • Reddy Pullagurala VL, Adisa IO, Rawat S, Kim B, Barrios AC, Medina-Velo IA, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Finding the conditions for the beneficial use of ZnO nanoparticles towards plants - a review. Environ Pollut 241:1175–1181

    CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494. https://doi.org/10.1155/2014/925494

    Article  CAS  Google Scholar 

  • Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr J Bot 85:32–38

    CAS  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium _ Prunus cerasus). Plant Physiol Biochem 61:162–168

    CAS  Google Scholar 

  • Schlegel HG (1956) Die Verwertung organischer Säuren durch Chlorella im Licht. Planta 47:510–526

    CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents, and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340

    Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    CAS  Google Scholar 

  • Singleton VL, Rossi JR (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungestic acid reagent. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatins synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714

    CAS  Google Scholar 

  • Tajic S, Zarinkamar F, Mohammad Soltani B, Nazari M (2019) Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Sci Hortic 257:108751

    Google Scholar 

  • Vankova R, Landa P, Podlipná R, Dobrev P, Přerostová S, Langhansová L, Gaudinova A, Moťková K, Knirsch V, Vanek T (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ 593-594:535–542

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous poly-amines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Viswanath KK, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250

    Google Scholar 

  • Wang C, Zhang SH, Wang PF, Qian J, Hou J, Zhang WJ, Lu J (2009) Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (L.f.) Royle. Chemosphere 76(7):938–945

    CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. https://doi.org/10.1186/1471-2229-10-34

    Article  CAS  Google Scholar 

  • Zengin F (2014) Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc Natl Acad Sci India Sect B Biol Sci 84(3):749–755. https://doi.org/10.1007/s40011-013-0285-4

    Article  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    CAS  Google Scholar 

  • Zoufan P, Karimiafshar A, Shokati S, Hassibi P, Rastegarzadeh S (2018) Oxidative damage and antioxidant response in Chenopodium murale L. exposed to elevated levels of Zn. Braz Arch Biol Technol 61:1–15

    Google Scholar 

  • Zoufan P, Azad Z, Rahnama Ghahfarokhie A, Kolahi M (2020a) Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora L. exposed to cadmium. Ecotoxicol Environ Saf 187:109811

    CAS  Google Scholar 

  • Zoufan P, Baroonian M, Zargar B (2020b) ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environ Sci Pollut Res 27(10):11066–11078

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Research Affairs of Shahid Chamran University of Ahvaz (grant no. SCU.SB98.746).

Author information

Authors and Affiliations

Authors

Contributions

ST performed all the assessments related to growth and biochemical parameters; PZ designed and conducted the research, analyzed the data, and wrote the paper; BZ helped as consultant to carry out some chemical protocols. All authors revised the manuscript and approved submission of this work.

Corresponding author

Correspondence to Parzhak Zoufan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherbahrani, ., Zoufan, P. & Zargar, B. Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L.. Environ Sci Pollut Res 28, 65644–65654 (2021). https://doi.org/10.1007/s11356-021-15566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15566-y

Keywords

Navigation