Skip to main content
Log in

Genetic susceptibility of δ-ALAD associated with lead (Pb) intoxication: sources of exposure, preventive measures, and treatment interventions

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Delta-aminolevulinic acid dehydratase (δ-ALAD) is involved in the synthesis of haem and exhibits a polymorphic nature. δ-ALAD polymorphism produces two alleles, namely δ-ALAD-1 and δ-ALAD-2, which in turn produce three different phenotypes, namely δ-ALAD1-1, δ-ALAD1-2, and δ-ALAD2-2. δ-ALAD gene is more susceptible to lead (Pb) toxicity than any other genes. Its genotype and phenotype frequencies change with respect to different geographical areas and extent of Pb exposure. The δ-ALAD-2 allele dominancy is linked with high concentration of lead in the body. It has also been thought that the δ-ALAD-2 allele can provoke Pb toxicity by producing a protein that binds more tightly with Pb than δ-ALAD-1 protein. However, few evidences suggest that δ-ALAD-2 may reduce harmful effects by increasing excretion of Pb from the body, thus producing its unavailability towards pathophysiologic alterations. However, the recent evidences have supported that the individuals who are heterozygote for the δ-ALAD-1 allele may be associated with a higher risk of long-term Pb toxicity. In this regard, the individuals who are exposed at occupational levels are among the most frequent study population. The main objective of our study was to explore the gene susceptibility associated with Pb poisoning. Moreover, this study also summarizes various sources of Pb exposure and thereafter outlined multiple strategies to minimize the Pb toxicity in order to save the exposed residential communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated and/or analyzed during this study are included in this published article.

References

  • Abdurraman F, Yahya Y (2008) Nutritional data on snails, shrimps, cray fish and stockfish sold in Sokoto Central Market, Sokoto State, Nigeria Kabawa. J Sci Sci Educ 1:25–30

    Google Scholar 

  • Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1763:723–736

    CAS  Google Scholar 

  • Åkesson A, Berglund M, Schütz A, Bjellerup P, Bremme K, Vahter M (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287

    Article  Google Scholar 

  • Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64

    Article  CAS  Google Scholar 

  • Ashley K et al (1997) Protecting workers exposed to lead-based paint hazards; a report to Congress. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services

  • Banks EC, Ferretti LE, Shucard D (1997) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology 18:237–281

    CAS  Google Scholar 

  • Battistuzzi G, Petrucci R, Silvagni L, Urbani F, Caiola S (1981) δ-Aminolevulinate dehydrase: a new genetic polymorphism in man. Ann Hum Genet 45:223–229

    Article  CAS  Google Scholar 

  • Bellinger D, Dietrich KN (1994) Low-level lead exposure and cognitive function in children. Pediatr Ann 23:600–605

    Article  CAS  Google Scholar 

  • Bergdahl IA, Grubb A, Schütz A, Desnick RJ, Wetmur JG, Sassa S, Skerfving S (1997) Lead binding to δ-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol 81:153–158

    Article  CAS  Google Scholar 

  • Blom NS, Tétreault S, Coulombe R, Sygusch J (1996) Novel active site in Escherichia coli fructose 1, 6-bisphosphate aldolase. Nat Struct Biol 3:856–862

    Article  CAS  Google Scholar 

  • Boese QF, Spano AJ, Li J, Timko M (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 266:17060–17066

    Article  CAS  Google Scholar 

  • Bolt GH, Bruggenwert MGM (eds) (1978) Soil chemistry, A. Basic elements. Elsevier Scientific Publishing Company

    Google Scholar 

  • Borralho LM, Ortiz CH, Panek AD, Mattoon JR (1990) Purification of δ-aminolevulinate dehydratase from genetically engineered yeast. Yeast 6:319–330

    Article  CAS  Google Scholar 

  • Chauhan S, O’Brian MR (1995) A mutant Bradyrhizobium japonicum δ-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules. J Biol Chem 270:19823–19827

    Article  CAS  Google Scholar 

  • Chauhan S, Titus DE, O’Brian MR (1997) Metals control activity and expression of the heme biosynthesis enzyme delta-aminolevulinic acid dehydratase in Bradyrhizobium japonicum. J Bacteriol 179:5516–5520

    Article  CAS  Google Scholar 

  • Chiu Y-W, Liu T-Y, Chuang H-Y (2013) The effects of lead exposure on the activities of δ-aminolevulinic acid dehydratase with the modification of the relative genotypes. In: E3S Web of conferences, 2013. EDP Sciences, pp 26005

  • Choi J-H, Rhee I-K, Park K-Y, Park K-Y, Kim J-K, Rhee S-J (2003) Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci 73:1479–1489

    Article  CAS  Google Scholar 

  • Cooper SJ et al (1996) The crystal structure of a class II fructose-1, 6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 4:1303–1315

    Article  CAS  Google Scholar 

  • Council NR (1993) Measuring lead exposure in infants, children, and other sensitive populations. National Academies Press, Washington, DC. 10.17226/2232

  • Cunningham WP, Saigo BW (2005) Environmental science. McGraw Hill Education

    Google Scholar 

  • da Cunha Martins Jr A et al (2015) Effects of lead exposure and genetic polymorphisms on ALAD and GPx activities in Brazilian battery workers. J Toxicol Environ Health A 78:1073–1081

    Article  CAS  Google Scholar 

  • Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead-and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain J Inorg Biochem 98:266-275

  • Dewanjee S, Sahu R, Karmakar S, Gangopadhyay M (2013) Toxic effects of lead exposure in Wistar rats: involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food Chem Toxicol 55:78–91

    Article  CAS  Google Scholar 

  • El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47:2209–2215

    Article  CAS  Google Scholar 

  • El-Neweshy MS, El-Sayed YS (2011) Influence of vitamin C supplementation on lead-induced histopathological alterations in male rats. Exp Toxicol Pathol 63:221–227

    Article  CAS  Google Scholar 

  • El-Sayed Y, El-Neweshy M (2010) Influence of vitamin C supplementation on lead-induced histopathological alterations in male rats. Toxicol Lett:S299

  • Flora S, Sharma R (1986) Influence of dietary supplementation with thiamine on lead intoxication in rats. Biol Trace Elem Res 10:137–144

    Article  CAS  Google Scholar 

  • Fujihara J et al (2009) Ethnic variation in genotype frequencies of δ-aminolevulinic acid dehydratase (ALAD). Toxicol Lett 191:236–239

    Article  CAS  Google Scholar 

  • Fujita H, Bishop TR, Ishida N (1994) Toxicology and molecular biology of δ-aminolevulinate dehydratase. Stem Cells 12:27–39

    Article  Google Scholar 

  • Gao A, Lu X-t, Li Q-y, Tian L (2010) Effect of the delta-aminolevulinic acid dehydratase gene polymorphism on renal and neurobehavioral function in workers exposed to lead in China. Sci Total Environ 408:4052–4055

    Article  CAS  Google Scholar 

  • Goyer RA, Cherian MG (1979) Ascorbic acid and EDTA treatment of lead toxicity in rats. Life Sci 24:433–438

    Article  CAS  Google Scholar 

  • Goyer RA, Clarkson TW (2001) Toxic effects of metals. In: Klaassen CD, Watkins III JB (eds) Casarett & Doull’s Essentials of toxicology. The basic science of poisons. 5th edn. McGraw-Hill Education, McGraw-Hill Education, LLC, pp 811-867

  • Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T (2010) Protective effects of Etlingera elatior extract on lead acetate-induced changes in oxidative biomarkers in bone marrow of rats. Food Chem Toxicol 48:2688–2694

    Article  CAS  Google Scholar 

  • Hammad TA, Sexton M, Langenberg P (1996) Relationship between blood lead and dietary iron intake in preschool children: a cross-sectional study gercj 6:30-33

  • Hsieh L-L, Liou S-H, Chen Y-H, Tsai L-C, Yang T, Wu T-N (2000) Association between aminolevulinate dehydrogenase genotype and blood lead levels in Taiwan. J Occup Environ Med 42:151–155

    Article  CAS  Google Scholar 

  • Hu H, Wu M-T, Cheng Y, Sparrow D, Weiss S, Kelsey K (2001) The delta-aminolevulinic acid dehydratase (ALAD) polymorphism and bone and blood lead levels in community-exposed men: the Normative Aging Study. Environ Health Perspect 109:827–832

    CAS  Google Scholar 

  • Huijun Z (2005) Delta amino levulinic acid dehydratase (ALAD) polymorphism and its effect on human susceptibility to renal toxicity by inorganic lead. National University of Singapore

    Google Scholar 

  • Huo X, Peng L, Qiu B, Zheng L, Yekeen TA, Xu X (2014) ALAD genotypes and blood lead levels of neonates and children from e-waste exposure in Guiyu, China. Environ Sci Pollut Res 21:6744–6750

    Article  CAS  Google Scholar 

  • Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomembr 27:169–179

    Article  CAS  Google Scholar 

  • Jaffe EK (2000) The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr D Biol Crystallogr 56:115–128

    Article  CAS  Google Scholar 

  • Jaffe E, Bagla S, Michini P (1991) Reevaluation of a sensitive indicator of early lead exposure. Biol Trace Elem Res 28:223–231

    Article  CAS  Google Scholar 

  • Jain NB, Laden F, Guller U, Shankar A, Kazani S, Garshick E (2005) Relation between blood lead levels and childhood anemia in India. Am J Epidemiol 161:968–973

    Article  Google Scholar 

  • Jordan PM (1994) Highlights in haem biosynthesis. Curr Opin Struct Biol 4:902–911

    Article  CAS  Google Scholar 

  • Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, Sarihi A (2015) Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull 116:7–15

    Article  CAS  Google Scholar 

  • Karki R, Pandya D, Elston RC, Ferlini C (2015) Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet 8:1–7

    CAS  Google Scholar 

  • Kayaaltı Z, Sert S, Kaya-Akyüzlü D, Söylemez E, Söylemezoğlu T (2016) Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels. Environ Toxicol Pharmacol 41:147–151

    Article  CAS  Google Scholar 

  • Kelada SN, Shelton E, Kaufmann RB, Khoury MJ (2001) δ-Aminolevulinic acid dehydratase genotype and lead toxicity: a HuGE review. Am J Epidemiol 154:1–13

    Article  CAS  Google Scholar 

  • Kim SC, Byun SH, Yang CH, Kim CY, Kim JW, Kim SG (2004) Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage). Toxicology 197:239–251

    Article  CAS  Google Scholar 

  • Kowalczyk E, Jankowski A, Niedworok J, Smigielski J, Jankowska B (2002) The effect of anthocyanins from Aronii melanocarpa and acetylcysteine on selected after-effects of lead acetate poisoning. Pol Merkur Lekarski 12:221–223

    CAS  Google Scholar 

  • Lanphear BP, Byrd RS, Auinger P, Schaffer SJ (1998) Community characteristics associated with elevated blood lead levels in children. Pediatrics 101:264–271

    Article  CAS  Google Scholar 

  • Lanphear B, Dietrich K, Auinger P, Cox C (2000) Subclinical lead toxicity in US children and adolescents. In: Pediatric Research, 2000. vol 4. Int Pediatric Research Foundation, pp 152A-152A

  • Larsson S, Piscator M (1971) Effect of cadmium on skeletal tissue in normal and calcium-deficient rats. Isr J Med Sci 7:495–498

    CAS  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    Article  Google Scholar 

  • Liu C-M, Ma J-Q, Sun Y-Z (2012a) Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol 258:330–342

    Article  CAS  Google Scholar 

  • Liu C-M, Ma J-Q, Sun Y-Z (2012b) Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp Toxicol Pathol 64:575–582

    Article  CAS  Google Scholar 

  • Liu C-M, Sun Y-Z, Sun J-M, Ma J-Q, Cheng C (2012c) Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway. Biochimica et Biophysica Acta (BBA)-General Subjects 1820:1693–1703

    Article  CAS  Google Scholar 

  • Liu C-M, Zheng G, Ming Q, Sun J, Cheng C (2013) Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radic Res 47:192–201

    Article  CAS  Google Scholar 

  • Louis ED, Applegate L, Graziano JH, Parides M, Slavkovich V, Bhat HK (2005) Interaction between blood lead concentration and δ-amino-levulinic acid dehydratase gene polymorphisms increases the odds of essential tremor. Mov Disord 20:1170–1177

    Article  Google Scholar 

  • Mahaffey KR (1995) Nutrition and lead: strategies for public health. Environ Health Perspect 103:191–196

    Google Scholar 

  • Mahuta MA (2020) An overlook of sources and strategies of minimizing lead poisoning in Nigeria. J Human Soc Sci 20:330–340

    Google Scholar 

  • Malešev D, Kuntić V (2007) Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J Serbian Chem Soc 72:921–939

    Article  CAS  Google Scholar 

  • Mani MS, Kunnathully V, Rao C, Kabekkodu SP, Joshi MB, D’Souza HS (2018) Modifying effects of δ-aminolevulinate dehydratase polymorphism on blood lead levels and ALAD activity Toxicol Lett 295:351-356

  • McElvaine MD, Orbach HG, Binder S, Blanksma LA, Maes EF, Krieg RM (1991) Evaluation of the erythrocyte protoporphyrin test as a screen for elevated blood lead levels. J Pediatr 119:548–550

    Article  CAS  Google Scholar 

  • Mehana E, Meki ARM, Fazili KM (2012) Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Exp Toxicol Pathol 64:291–295

    Article  CAS  Google Scholar 

  • Mugahi MN, Heidari Z, Sagheb HM, Barbarestani M (2003) Effects of chronic lead acetate intoxication on blood indices of male adult rat. DARU J Pharm Sci 11:147–141

    CAS  Google Scholar 

  • Narayanan P (2009) Environmental pollution: principles, analysis and control. CBS Publishers & Distributors PVT

    Google Scholar 

  • Nariya A et al (2017) Association of delta-aminolevulinic acid dehydratase polymorphism with blood lead and hemoglobin level in lead exposed workers Annual Research & Review in Biology 1-7

  • Nishijo M, Tawara K, Honda R, Kuriwaki J-i, Nakagawa H, Tanebe K, Saito S (2004) Cadmium and nutritional intake in pregnant Japanese women. Toxicol Lett 148:171–176

    Article  CAS  Google Scholar 

  • Osterloh JD, Sharp DS, Hata B (1990) Quality control data for low blood lead concentrations by three methods used in clinical studies. J Anal Toxicol 14:8–11

    Article  CAS  Google Scholar 

  • Park SJ, Lee JR, Jo MJ, Park SM, Ku SK, Kim SC (2013) Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats. J Ginseng Res 37:37

    Article  Google Scholar 

  • Patrick L (2006) Lead toxicity, a review of the literature. Part I: Exposure, evaluation, and treatment. Altern Med Rev 11

  • Pirkle JL, Kaufmann RB, Brody DJ, Hickman T, Gunter EW, Paschal DC (1998) Exposure of the US population to lead, 1991-1994 Environ Health Perspect 106:745-750

  • Poulos L, Qammaz S, Athanaselis S, Maravelias C, Koutselinis A (1986) Statistically significant hematopoietic effects of low blood lead levels. Arch Environ Health 41:384–386

    Article  CAS  Google Scholar 

  • Ramadhan MR, Adhiyanto C, Harriyati Z (2017) Identification of Delta-Aminolevulinic Acid Dehydratase (ALAD) Gene polymorphism and its association with anemia in medical study programs and doctor profession 2012-2014 Syarif Hidayatullah State Islamic University. In: 1st International Integrative Conference on Health, Life and Social Sciences (ICHLaS 2017), 2017. Atlantis Press,

  • Ray RR (2016) Haemotoxic effect of lead: a review. In: Proceedings of the Zoological Society, 2016. vol 2. Springer, pp 161-172

  • Reddy SY, Pullakhandam R, Kumar BD (2010) Thiamine reduces tissue lead levels in rats: mechanism of interaction. Biometals 23:247–253

    Article  CAS  Google Scholar 

  • Reddy YA, Chalamaiah M, Ramesh B, Balaji G, Indira P (2014) Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats. J Food Sci Technol 51:908–914

    Article  CAS  Google Scholar 

  • Reeves PG, Chaney RL (2004) Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ Res 96:311–322

    Article  CAS  Google Scholar 

  • Rujito L, Hanief MN, Gozali P, Mulyanto J (2015) GFR and blood lead levels in gas station workers based on δ-ALAD gene polymorphisms. Jurnal Ners 10:74–79

    Article  Google Scholar 

  • Sadaf S, Ali M (2016) Role of ALAD isoforms in anemia and correlation of blood lead level with hemoglobin concentration in automobile paint workers of Karachi. Pakistan International Journal of Biology and Biotechnology 13:163–169

    CAS  Google Scholar 

  • Sakamoto D et al (2004) A mutation in the gene for δ-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka, Oryzias latipes. Mech Dev 121:747–752

    Article  CAS  Google Scholar 

  • Salawu K (2008) Lead poisoning, treatment and control: the organised private sector. Kabawa Journal of Science and Science Education 1:56–61

    Google Scholar 

  • Salawu EO, Adeleke AA, Oyewo OO, Ashamu EA, Ishola OO, Afolabi AO, Adesanya TA (2009) Prevention of renal toxicity from lead exposure by oral administration of Lycopersicon esculentum. J Toxicol Environ Health Sci 1:022–027

    CAS  Google Scholar 

  • Sargent JD, Brown MJ, Freeman JL, Bailey A, Goodman D, Freeman DH Jr (1995) Childhood lead poisoning in Massachusetts communities: its association with sociodemographic and housing characteristics. Am J Public Health 85:528–534

    Article  CAS  Google Scholar 

  • Schutte R et al (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    Article  CAS  Google Scholar 

  • Schwartz BS, Lee B-K, Lee G-S, Stewart WF, Simon D, Kelsey K, Todd AC (2000) Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]-aminolevulinic acid dehydratase genes. Environ Health Perspect 108:949–954

    CAS  Google Scholar 

  • Scinicariello F, Murray HE, Moffett DB, Abadin HG, Sexton MJ, Fowler BA (2007) Lead and δ-aminolevulinic acid dehydratase polymorphism: where does it lead? A meta-analysis. Environ Health Perspect 115:35–41

    Article  CAS  Google Scholar 

  • Senior NM et al (1996) Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae. Biochem J 320:401–412

    Article  CAS  Google Scholar 

  • Sharma V, Sharma A, Kansal L (2010) The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food Chem Toxicol 48:928–936

    Article  CAS  Google Scholar 

  • Simon JA, Hudes ES (1999) Relationship of ascorbic acid to blood lead levels. JAMA 281:2289–2293

    Article  CAS  Google Scholar 

  • Smith CM, Wang X, Hu H, Kelsey KT (1995) A polymorphism in the delta-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect 103:248–253

    CAS  Google Scholar 

  • Suleiman J, Eze E, Momoh I, Usman W, Hedima N, Zipele H, Isa A (2013) Ameliorative effect of vitamin C on serum liver enzymes in lead-induced toxicity in Wistar rats. J Sci 3:188–192

    Google Scholar 

  • Süzen HS, Duydu Y, Aydın A, Işımer A, Vural N (2003) Influence of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism on biomarkers of lead exposure in Turkish storage battery manufacturing workers. Am J Ind Med 43:165–171

    Article  CAS  Google Scholar 

  • Tandon SK, Flora SJ, Singh S (1987) Influence of pyridoxine (vitamin B6) on lead intoxication in rats. Ind Health 25:93–96

    Article  CAS  Google Scholar 

  • Tasmin S, Furusawa H, Ahmad SA, Faruquee M, Watanabe C (2015) Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA). Environ Res 136:318–323

    Article  CAS  Google Scholar 

  • Toplan S, Özcelik D, Gulyasar T, Akyolcu MC (2004) Changes in hemorheological parameters due to lead exposure in female rats. J Trace Elem Med Biol 18:179–182

    Article  CAS  Google Scholar 

  • van Bemmel DM, Li Y, McLean J, Chang M-h, Dowling NF, Graubard B, Rajaraman P (2011) Blood lead levels, ALAD gene polymorphisms, and mortality. Epidemiology (Cambridge, Mass) 22:273

    Article  Google Scholar 

  • Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM (1998) Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci 23:217–221

    Article  CAS  Google Scholar 

  • Weaver VM et al (2006) Effect modification by δ-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers. Environ Res 102:61–69

    Article  CAS  Google Scholar 

  • Wetmur JG (1994) Influence of the common human delta-aminolevulinate dehydratase polymorphism on lead body burden. Environ Health Perspect 102:215–219

    CAS  Google Scholar 

  • Wetmur JG, Bishop DF, Cantelmo C, Desnick RJ (1986) Human delta-aminolevulinate dehydratase: nucleotide sequence of a full-length cDNA clone. Proc Natl Acad Sci 83:7703–7707

    Article  CAS  Google Scholar 

  • Wright RT (2007) Environmental science: towards a sustainable future New Delhi: PHL Learning Private Ltd vol 1. Jones & Bartlett Publishers

    Google Scholar 

  • Yohannes YB et al (2021) Delta-aminolevulinic acid dehydratase (ALAD) and vitamin D receptor (VDR) genes polymorphisms in children residing in an abandoned lead-zinc mine area in Kabwe. Zambia Meta Gene 27:100838

    Article  Google Scholar 

  • Yun L, Zhang W, Qin K (2015) Relationship among maternal blood lead, ALAD gene polymorphism and neonatal neurobehavioral development. Int J Clin Exp Pathol 8:7277

    Google Scholar 

  • Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7:552–571

    Article  CAS  Google Scholar 

  • Ziegler EE, Edwards BB, Jensen RL, Mahaffey KR, Fomon SJ (1978) Absorption and retention of lead by infants. Pediatr Res 12:29–34

    Article  CAS  Google Scholar 

  • Ziemsen B, Angerer J, Lehnert G, Benkmann H-G, Goedde H (1986) Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health 58:245–247

    Article  CAS  Google Scholar 

  • Zoossmann-Diskin A, Swinburne S, Shohat M, Peleg L, Gazit E, Turner D (2008) Typing classical polymorphisms by real-time PCR: Analysis of the GPT and ALAD protein polymorphisms in the Jewish populations. Am J Hum Biol 20:490–492

    Article  Google Scholar 

Download references

Funding

This work has been financially supported by research grants (8365/Punjab/NRPU/R&D/HEC/2017) received from the Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

AQ: writing-original draft, literature search. KR: investigation, conceptualization, writing-final draft, and editing. MSHA: project administration, supervision, conceptualization, methodology, writing-original draft preparation, and editing.

Corresponding author

Correspondence to Muhammad Sajid Hamid Akash.

Ethics declarations

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, A., Rehman, K. & Akash, M. Genetic susceptibility of δ-ALAD associated with lead (Pb) intoxication: sources of exposure, preventive measures, and treatment interventions. Environ Sci Pollut Res 28, 44818–44832 (2021). https://doi.org/10.1007/s11356-021-15323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15323-1

Keywords

Navigation