Skip to main content

Advertisement

Log in

Atmospheric CO2 consumption by rock weathering over a five year period in a large non-perennial tropical river basin of southern India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rivers engage in carbon cycle by transporting the dissolved products of weathering of rocks to the oceans, and this process is sensitive to the global climatic changes. The present study was carried out with an objective of estimating the spatial and temporal variation in carbon consumption due to rock weathering in Cauvery, which is a major non-perennial tropical river in the peninsular India. The samples of all the rock types of this river basin were collected and subjected to mineralogical analysis. The water samples from this river were collected three times a year from 2013 to 2017 at 28 locations and were analysed for pH, EC and major ions. The spatiotemporal variations in the chemistry of river water were used to understand the amount of carbon dioxide consumed by rock weathering. The contribution of weathering to dissolved load of the river was higher followed by the contribution of anthropogenic activities and rainfall. The contribution of silicate weathering is dominant during the high river flow, whereas during low flow time periods, the contribution of carbonate weathering is on par with silicate weathering. The carbon consumption due to weathering in the Cauvery river was higher when the flow was significant, and it was lower during summer months. It is also evident that the carbon consumption is high in the upper and middle regions of the basin due to the weathering of gneissic and granodiorite rocks. Thus, the carbon consumption and flux in this basin are dynamic, both spatially and temporally. The east flowing rivers draining through the peninsular India, which is mostly composed of massive rocks, also functions as carbon sink, thus benefitting the environment by reducing the excess CO2 in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and other material used for this study are available and will not be shared to third party for any purpose without written approval and necessary instructions from the funding agency.

References

  • ADB Technical Assistance Consultant Report (2013) India: Cauvery Delta Zone: climate data and future scenarios - final report, climate adaptation through sub-basin development investment program. Bank, Asian Development

    Google Scholar 

  • Akoko E, Atekwana EA, Cruse AM, Molwalefhe L, Masamba WR (2013) River-wetland interaction and carbon cycling in a semi-arid riverine system: the Okavango Delta, Botswana. Biogeochemistry 114(1-3):359–380

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO. Rome 300(9):D05109

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association/American Water Works Association/Water, Environment Federation, Washington, DC

    Google Scholar 

  • Atekwana EA, Molwalefhe L, Kgaodi O, Cruse AM (2016) Effect of evapotranspiration on dissolved inorganic carbon and stable carbon isotopic evolution in rivers in semi-arid climates: the Okavango Delta in North West Botswana. J Hydrol: Reg Stud 1(7):1–3

    Google Scholar 

  • Baron J (1992) Biogeochemistry of a sub alpine ecosystem: Loch Vale watershed. Ecological Studies, Vol 90 New York : Spriger Verlag

  • Bates NR, Pequignet AC, Sabine CL (2006) Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal variability of inorganic carbon and air-sea CO2 gas exchange. Global Biogeochem. Cycles 20. https://doi.org/10.1029/2005GB002491

  • Beaulieu E, Goddéris Y, Donnadieu Y, Labat D, Roelandt C (2012) High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nat Clim 2(5):346–349

    Article  CAS  Google Scholar 

  • Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304(5):397–437

    Article  CAS  Google Scholar 

  • Berner RA (1991) A model for atmospheric CO2 over Phanerozoic time. Am J Sci 291:339–376. https://doi.org/10.2475/ajs.291.4.339

    Article  CAS  Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12(6):365–368

    Article  CAS  Google Scholar 

  • Blum JD, Gazis CA, Jacobson AD, Page Chamberlain C (1998) Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geol 26(5):411–414

    Article  CAS  Google Scholar 

  • Bluth GJ, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58(10):2341–2359. https://doi.org/10.1016/0016-7037(94)90015-9

  • Brault MO, Matthews HD, Mysak LA (2017) The importance of terrestrial weathering changes in multimillennial recovery of the global carbon cycle: a two-dimensional perspective. Earth Syst Dynam 8(2):455

    Article  Google Scholar 

  • Cao Y, Tang C, Song X, Liu C (2015) Major ion chemistry, chemical weathering and CO2 consumption in the Songhua River basin, Northeast China. Environ Earth Sci 73(11):7505–7516

    Article  CAS  Google Scholar 

  • Chapman DV (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. CRC Press, Florida

    Book  Google Scholar 

  • Chhabra A, Dadhwal VK (2004) Assessment of major pools and fluxes of carbon in Indian forests. Clim Chang 64:341–360. https://doi.org/10.1023/B:CLIM.0000025740.50082.e7

    Article  CAS  Google Scholar 

  • Chhabra A, Palria S, Dadhwal VK (2003) Soil organic carbon pool in Indian forests. Forest Ecol Manag 173(1-3):187–199

    Article  Google Scholar 

  • Colbourn G, Ridgwell A, Lenton TM (2013) The rock geochemical model (RokGeM) v0.9. Geosci. Model Dev 6:1543–1573. https://doi.org/10.5194/gmd-6-1543-2013

    Article  CAS  Google Scholar 

  • Dadhwal VK (2012) Assessment of Indian carbon cycle components using earth observation systems and ground inventory. Int Arch Photogram Remote Sens Spat. Inf Sci 39:249–254

    Google Scholar 

  • Das P, Sarma KP, Jha PK, Ranjan R, Herbert R, Kumar M (2016) Understanding the cyclicity of chemical weathering and associated CO2 consumption in the Brahmaputra River Basin ( India ): the role of major rivers in climate. Aquat Geochem 22:225–251. https://doi.org/10.1007/s10498-016-9290-6

    Article  CAS  Google Scholar 

  • Durand N, Gunnell Y, Curmi P, Ahmad SM (2006) Pathways of calcrete development on weathered silicate rocks in Tamil Nadu, India: mineralogy, chemistry and paleoenvironmental implications. Sediment Geol 192(1-2):1–8

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  CAS  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159(1-4):31–60. https://doi.org/10.1016/S0009-2541(99)00033-9

    Article  CAS  Google Scholar 

  • Garrels RM, Mackenzie F (1967) Origin of the chemical composition of some springs and lakes. In: Stumm, W., Ed., Equilibrium Concepts in Natural Water Systems, Chap. 10, American Chemical Society, Washington DC, 222-242. https://doi.org/10.1021/ba-1967-0067.ch010

  • Gobre T, Salve PR, Krupadam RJ, Bansiwal A, Shastry S, Wate SR (2010) Chemical composition of precipitation in the coastal environment of India. Bull Environ Contam Toxicol 85(1):48–53

    Article  CAS  Google Scholar 

  • Grosbois C, Négrel P, Fouillac C, Grimaud D (2000) Dissolved load of the Loire River: chemical and isotopic characterization. Chem Geol 170(1-4):179–201. https://doi.org/10.1016/S0009-2541(99)00247-8

    Article  CAS  Google Scholar 

  • Gupta H, Chakrapani GJ, Selvaraj K, Kao SJ (2011) The fluvial geochemistry, contributions of silicate, carbonate and saline–alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India. Geochim Cosmochim Acta 75(3):800–824. https://doi.org/10.1016/j.gca.2010.11.010

    Article  CAS  Google Scholar 

  • Hansell D, Carlson C, Repeta D, Schlitzer R (2009) Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:202–211. https://doi.org/10.5670/oceanog.2009.109

    Article  Google Scholar 

  • India WRIS (2018) Cauvery. http://www.indiawris.nrsc.gov.in/wrpinfo/index.php?title=Cauvery. .

  • Isson TT, Planavsky NJ, Coogan LA, Stewart EM, Ague JJ, Bolton EW, Zhang S, McKenzie NR, Kump LR (2020) Evolution of the global carbon cycle and climate regulation on earth. Glob Biogeochem Cycles 34(2)

  • Jacobson AD, Blum JD, Chamberlain CP, Craw D, Koons PO (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim Cosmochim Acta 67(1):29–46

    Article  CAS  Google Scholar 

  • Jankowski J, Acworth RI (1997) Impact of debris-flow deposits on hydrogeochemical processes and the developement of dryland salinity in the Yass River Catchment, New South Wales, Australia. Hydrogeol J 5(4):71–88

    Article  Google Scholar 

  • Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B, Mahabaleswar B (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res 99:225–254. https://doi.org/10.1016/S0301-9268(99)00063-7

    Article  CAS  Google Scholar 

  • Jiang P, Yu G, Zhang Q, Zou Y, Tang Q, Kang Z, Sytharith P, Xiao H (2020) Chemical weathering and CO 2 consumption rates of rocks in the Bishuiyan subterranean basin of Guangxi, China. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • John MM, Balakrishnan S, Bhadra BK (2005) Contrasting metamorphism across Cauvery Shear Zone, South India. J Earth Syst Sci 114(2):1–16. https://doi.org/10.1007/BF02702016

    Article  Google Scholar 

  • Krishnaswami S (1999) Silicate weathering in the Himalaya: role in contributing to major ions and radiogenic Sr to the Bay of Bengal. Ocean Science, Trends and Future Directions

    Google Scholar 

  • Krishnaswami S, Singh SK (2005) Chemical weathering in the river basins of the Himalaya, India. Curr Sci 89(5):841–849

    CAS  Google Scholar 

  • Kumar M, Rajendran A, Somasundar K, Haake B, Jenisch A, Shuo Z, Ittekkot V, Desai BN (1990) Dynamics of dissolved organic carbon in the northwestern Indian Ocean. Mar Chem 31:299–316. https://doi.org/10.1016/0304-4203(90)90044-D

    Article  CAS  Google Scholar 

  • Le Quere C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Ivar Korsbakken J, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, E D C Bakker, Barbero L, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Séférian R, Skjelvan I, Stocker BD, Tian H, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S (2017) Global carbon budget 2017. Earth System Science Data Discussions 1-79.

  • Leybourne MI, Goodfellow WD (2010) Geochemistry of surface waters associated with an undisturbed Zn–Pb massive sulfide deposit: water–rock reactions, solute sources and the role of trace carbonate. Chem Geol 279(1-2):40–54. https://doi.org/10.1016/j.chemgeo.2010.10.002

    Article  CAS  Google Scholar 

  • Li S, Xu Z, Wang H, Wang J, Zhang Q (2009) Geochemistry of the upper Han River basin, China: 3: anthropogenic inputs and chemical weathering to the dissolved load. Chem Geol 264(1-4):89–95. https://doi.org/10.1016/j.chemgeo.2009.02.021

    Article  CAS  Google Scholar 

  • Li S, Lu XX, Bush RT (2014) Chemical weathering and CO2 consumption in the Lower Mekong River. Sci Total Environ 472:162–177

    Article  CAS  Google Scholar 

  • Liu Z, Dreybrodt W, Liu H (2011) Atmospheric CO2 sink: silicate weathering or carbonate weathering? Appl Geochem 26:292–294

    Article  Google Scholar 

  • Liu J, Zhao Y, Li Z, Guo H (2019) Quantitative source apportionment of water solutes and CO2 consumption of the whole Yarlung Tsangpo River basin in Tibet, China. Environ Sci Pollut Res 26(27):28243–28255

    Article  CAS  Google Scholar 

  • Liu J, Chen B, Xu ZY, Wei Y, Su ZH, Yang R, Ji YX, Wang XD, Zhang LL, An N, Yang F (2020) Tracing solute sources and carbon dynamics under various hydrological conditions in a karst river in southwestern China. Environ Sci Pollut Res:1–2

  • Lloyd JW, Heathcote JAA (1985) Natural inorganic hydrochemistry in relation to ground water. Clarendon Press Oxford

  • Ludwig W, Amiotte-Suchet P, Probst JL (1999) Enhanced chemical weathering of rocks during the last glacial maximum: a sink for atmospheric CO2? Chem Geol 159(1-4):147–161. https://doi.org/10.1016/S0009-2541(99)00038-8

    Article  CAS  Google Scholar 

  • MoEFCC (2018) Second Biennial Update Report to the United Nations Framework Convention on Climate Change India Biennial Report, New Delhi.

  • Moon S, Huh Y, Qin J, van Pho N (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta 71(6):1411–1430. https://doi.org/10.1016/j.gca.2006.12.004

    Article  CAS  Google Scholar 

  • Moquet J, Crave A, Viers J, Seyler P, Armijos E, Bourrel L, Chavarri E, Lagane C, Laraque A, Sven W, Casimiro L, Pombosa R, Noriega L, Vera A, Guyot J (2011) Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chem Geol 287:1–26. https://doi.org/10.1016/j.chemgeo.2011.01.005

    Article  CAS  Google Scholar 

  • Moquet JS, Viers J, Crave A, Armijos E, Lagane C, Lavado W, Pépin E, Pombosa R, Noriega L, Santini W, Guyot JL (2014a) Comparison between silicate weathering and physical erosion rates in Andean basins of the Amazon river. Procedia Earth Planet Sci 10:275–279. https://doi.org/10.1016/j.proeps.2014.08.061

    Article  CAS  Google Scholar 

  • Moquet JS, Maurice L, Crave A, Viers J, Arevalo N, Lagane C, Lavado-Casimiro W, Guyot JL (2014b) Cl and Na fluxes in an Andean foreland basin of the Peruvian Amazon: an anthropogenic impact evidence. Aquat Geochem 20(6):613–637. https://doi.org/10.1007/s10498-014-9239-6

    Article  CAS  Google Scholar 

  • Moquet JS, Guyot JL, Crave A, Viers J, Filizola N, Martinez JM, Oliveira TC, Sánchez LS, Lagane C, Casimiro WS, Noriega L (2016) Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ Sci Pollut Res 23(12):11405–11429

    Article  CAS  Google Scholar 

  • Mortatti J, Probst JL (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197(1-4):177–196. https://doi.org/10.1016/S0009-2541(02)00349-2

    Article  CAS  Google Scholar 

  • Munhoven G (2002) Glacial–interglacial changes of continental weathering: estimates of the related CO2 and HCO3 flux variations and their uncertainties. Glob Planet Chang 33:155–176. https://doi.org/10.1016/S0921-8181(02)00068-1

    Article  Google Scholar 

  • Négrel P, Deschamps P (1996) Natural and anthropogenic budgets of a small watershed in the Massif Central (France): chemical and strontium isotopic characterization of water and sediments. Aquat Geochem 2(1):1–27

    Article  Google Scholar 

  • Pattanaik JK, Balakrishnan S, Bhutani R, Singh P (2013) Estimation of weathering rates and CO2 drawdown based on solute load: significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India. Geochim Cosmochim Acta 121:611–636. https://doi.org/10.1016/J.GCA.2013.08.002

    Article  CAS  Google Scholar 

  • Penman DE, Rugenstein JKC, Ibarra DE Winnick MJ (2020) Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci Rev 103298

  • Pichamuthu CS (1976) Some problems pertaining to the Peninsular Gneiss Complex. J Geol Soc India 17:1–16

    Google Scholar 

  • Pichamuthu CS (1978) Archaean geology investigations in southern India. Geol Soc India 19(10):431–439

    Google Scholar 

  • Price JR, Velbel MA (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol 202(3-4):397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001

    Article  CAS  Google Scholar 

  • Radhakrishna BP (1956) The Closepet granites of Mysore State, India. Mysore Geologists’ Association Special Publication, Bangalore, pp 1–110

    Google Scholar 

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46(1):47–61

    CAS  Google Scholar 

  • Ramachandra TV Vinay S Bharat S (2020) Urban dynamics in Coorg District, Karnataka. ENVIS Technical Reports April 2020.

  • RamyaPriya R, Elango L (2018) Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environ Earth Sci 77(1):2. https://doi.org/10.1007/s12665-017-7176-6

    Article  CAS  Google Scholar 

  • Song Z, Liu H, Strömberg CA, Wang H, Strong PJ, Yang X, Wu Y (2018) Contribution of forests to the carbon sink via biologically-mediated silicate weathering: a case study of China. Sci Total Environ 615:1–8. https://doi.org/10.1016/j.scitotenv.2017.09.253

    Article  CAS  Google Scholar 

  • Soumya BS, Sekhar M, Riotte J, Banerjee A, Braun JJ (2013) Characterization of groundwater chemistry under the influence of lithologic and anthropogenic factors along a climatic gradient in Upper Cauvery basin, South India. Environ Earth Sci 69(7):2311–2335

    Article  CAS  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res Ocean 88:9671–9688. https://doi.org/10.1029/JC088iC14p09671

    Article  CAS  Google Scholar 

  • Subramanian KS, Selvan TA (2001) Geology of Tamil Nadu and Pondicherry. 1st edn. Geol Soc of India, Bangalore, p 192

    Google Scholar 

  • Suchet PA, Ludwig W (2003) Worldwide distribution of continental rock lithology : implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycles 17(2). https://doi.org/10.1029/2002GB001891

  • Sun H, Han J, Li D, Zhang S, Lu X (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408(20):4749–4760. https://doi.org/10.1016/j.scitotenv.2010.06.007

    Article  CAS  Google Scholar 

  • Sundaram R, Rao PS (1981) Lithostratigraphy of Cretaceous and Palaeocene rocks of Tiruchirapalli District, Tamil Nadu, South India. GSI Rec 115(5):9–23

    Google Scholar 

  • Tipper ET, Bickle MJ, Galy A, West AJ, Pomiès C, Chapman HJ (2006) The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochim Cosmochim Acta 70(11):2737–2754

    Article  CAS  Google Scholar 

  • Torres MA, West AJ, Clark K.E (2015) Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon. Geochim et Cosmochim Acta 166:105-128. 10.1016/j.gca.2015.06.007

  • Torres MA, Moosdorf N, Hartmann J, Adkins JF, West AJ (2017) Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proc Nat Acad Sci 1–6. https://doi.org/10.1073/pnas.1702953114

  • Yang R, Sun H, Chen B, Yang M, Zeng Q, Zeng C, Huang J, Luo H, Lin D (2020) Temporal variations in riverine hydrochemistry and estimation of the carbon sink produced by coupled carbonate weathering with aquatic photosynthesis on land: an example from the Xijiang River, a large subtropical karst-dominated river in China. Environ Sci Pollut Res:1–3

  • Zeng S, Liu Z, Kaufmann G (2019) Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes. Nat Commun 10(1):1–10

    Article  Google Scholar 

  • Zhang Q, Tao Z, Ma Z, Tang W, Gao Q (2016) Riverine hydrochemistry and CO2 consumption in the tropic monsoon region : a case study in a granite-hosted basin, Hainan. Environ. Earth Sci 75:1–17. https://doi.org/10.1007/s12665-016-5250-0

    Article  CAS  Google Scholar 

  • Zhong J, Li SL, Tao F, Ding H, Liu J (2017) Impacts of hydrologic variations on chemical weathering and solute sources in the Min River basin, Himalayan–Tibetan region. Environ Sci Pollut Res 24(23):19126–19137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr Phrangbor Syiem, Dr Gopalakrishnan N. and Mr Dhanamadavan S. for their assistance in sample collection and analyses during the initial stages of this work.

Funding

Financial support for this work was provided the National Remote Sensing Centre, Indian Space Research Organisation (Grant no. ISRO/IGBP/NCP/NRSC/Project funds/10-2012(2)).

Author information

Authors and Affiliations

Authors

Contributions

This paper is a part of RR’s PhD research. RR was involved in collection of samples, analysis and interpretation of results, and LE was involved in conceptualization of the work and supervision of the work, and both the authors have contributed in the preparation of manuscript.

Corresponding author

Correspondence to Lakshmanan Elango.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RamyaPriya, R., Elango, L. Atmospheric CO2 consumption by rock weathering over a five year period in a large non-perennial tropical river basin of southern India. Environ Sci Pollut Res 28, 26461–26478 (2021). https://doi.org/10.1007/s11356-020-12257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12257-y

Keywords

Navigation