Skip to main content

Advertisement

Log in

Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal(loid)s are contaminants of concern emitted as particulate matter (PM) from several pollution sources. The objective was to characterize potential exposure from local airborne metal(loid)s in a community in proximity to mine tailings. Air samples were collected weekly at five sites around the municipal mine tailings using two Hi-volume samplers for simultaneously collecting PM10 and PM2.5. Total suspended particulates (TSP), concentrations, speciation, and bioaccessibility of metal(loid)s were quantified. The size and form of particles were determined by scanning electron microscopy. The concentration of TSP (μg m−3) in the airborne samples ranged from 21.2 to 64.6 for PM2.5 and 23.6 to 80.1 for PM10. The profiles of analyzed quasi-total metal(loid) concentration from all sampling sites were similar between these aerosols PM sizes except at site 2 for Cd, at site 3 for Cu, and site 4 for Zn. The order of quasi-total metal(loid) concentration, in the airborne samples for both PM sizes, was As > Zn > Fe > Pb > Cu > Mn > Cd. As speciation included As-sulfite, As(III)-O, and As(V)-O with less concentration of As(III)-O in both PM sizes. Bioaccessible metal(loid) concentrations were very high and represented a great percentage from the quasi-total airborne concentrations, for instance, 10% and 37% for Pb and 8% and 6% for As in pulmonary and gastric bioaccessible concentrations, respectively. Knowing the toxic effects of these pollutants, there is an urgent need to establish environmental regulation of bioaccessible pollutant concentrations from PM dislodged from uncovered metal(loid) mine tailings affecting not only nearby human populations but also possible long-distance ecosystem transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • ATSDR (2012) ToxGuideTM for cadmium. U.S. Department of Health and Human Services Public Health Service, Division of Toxicology and Human Health Sciences, Environmental Toxicology Branch, 2 pp. CAS# 7440–43-9. Available form: http://www.atsdr.cdc.gov/toxguides/toxguide-5.pdf. Accessed 11 July 2019

  • ATSDR (2019) ATSDR’s substance priority list Available from: https://www.atsdr.cdc.gov/spl/index.html. Accessed 09 Apr 2019

  • Beamer PI, Sugeng AJ, Kelly MD, Lothrop N, Klimecki W, Wilkinson ST, Loh M (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ Sci Process Impacts 16:1275–1281

    CAS  Google Scholar 

  • Boisa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA (2014) Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int 70:132–142. https://doi.org/10.1016/j.envint.2014.05.021

    Article  CAS  Google Scholar 

  • Bosso ST, Enzweiler J (2008) Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil. Environ Geochem Health 30(3):219–229

    CAS  Google Scholar 

  • Brandon EF, Oomen AG, Rompelberg CJ, Versantvoort CH, van Engelen JG, Sips AJ (2006) Consumer product in vitro digestion model: bioaccessibility of contaminants and its application in risk assessment. Regul Toxicol Pharmacol 44:161–171

    CAS  Google Scholar 

  • Breshears DD, Kirchner TB, Whicker JJ, Field JP, Allen CD (2012) Modeling aeolian transport in response to succession, disturbance and future climate: dynamic long-term risk assessment for contaminant redistribution. Aeolian Res 3:445–457

    Google Scholar 

  • Brown JS, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 10(1):1–12

    Google Scholar 

  • Caboche J, Perdrix E, Malet B, Alleman LY (2011) Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. J Environ Monit 13:621–630

    Google Scholar 

  • Carter JD, Ghio AJ, Samet JM, Devlin RB (1997) Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol 146(2):180–188

    CAS  Google Scholar 

  • Coe JM, Lindberg SE (1987) The morphology and size distribution of atmospheric particles deposited on foliage and inert surfaces. J Air Pollut Control Assoc 37(3):237–243

    CAS  Google Scholar 

  • Comfort GA, Francis GO, Samuel AB, Daniel AW, Sampson MA, Innocent JKA, James PA (2013) Heavy metal contamination in surface soil dust at selected fuel filling stations in Accra, Ghana. Am J Sci Ind Res 4(4):404–413. https://doi.org/10.5251/ajsir.2013.4.4.404.413

    Article  CAS  Google Scholar 

  • Corriveau MC, Jamieson HE, Parsons MB, Campbell JL, Lanzirotti A (2011) Direct characterization of airborne particles associated with arsenic-rich mine tailings: particle size, mineralogy and texture. Appl Geochem 26:1639–1648

    CAS  Google Scholar 

  • Cruz-Campas ME, Gómez Alvárez A, Quintero Núñez M, Varela SJ (2013) Evaluación de la calidad del aire respecto a partículas suspendidas totales (PST) y metales pesados (Pb, Cd, Ni, Cu, Cr) en la ciudad de Hermosillo, Sonora, México, durante un período anual. Rev Int Contam Ambiental 29(4):269–283

    Google Scholar 

  • Cruz-Campas ME, Gomez Alvarez A, Ramirez Leal R, Villalba Villalba AG, Monge Amaya O, Varela Salazar J, Quiroz Castillo JM, Duarte Tagles HF (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relación con salud respiratoria. Caso Sonora, México. Rev Int Contam Ambiental 33:23–34

    Google Scholar 

  • Csavina J, Landázuri A, Wonaschütz A, Rine K, Rheinheimer P, Barbaris B, Conant W, Sáez AE, Betterton EA (2011) Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut 221:145–157. https://doi.org/10.1007/s11270-011-0777-x

    Article  CAS  Google Scholar 

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73. https://doi.org/10.1016/j.scitotenv.2012.06.013

    Article  CAS  Google Scholar 

  • Darling P (2011) Permissible exposure limits for mineral dust. SME Mining Engineering Handbook. EA Engineering, Science, and Technology, Inc., Remedial Investigation Report Iron King Mine Humboldt Smelter Superfund Site, Dewey-Humboldt, Yavapai County, Arizona, 2010, http://www.yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/3dc283e6c5d6056f88257426007417a2/9ff58681f889089c 882576fd0075ea2f!OpenDocument, accessed: October 8, 2013

  • De la Campa AMS, de la Rosa JD, Sanchez-Rodas D, Oliveira V, Alastuey A, Querol X, Gomez-Ariza JL (2008) Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos Environ 42:6487–6495

    Google Scholar 

  • De la Campa AMS, Sánchez-Rodas D, Castanedo YG, Jesús D (2015) Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: influence on air quality. J Hazard Mater 291:18–27

    Google Scholar 

  • Dean JR, Elom NI, Entwistle JA (2017) Use of simulated epithelial lung fluid in assessing the human health risk of Pb in urban street dust. Sci Total Environ 579:387–395

    CAS  Google Scholar 

  • Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M (2012) In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Technol 46:6252–6260. https://doi.org/10.1021/es3006942

    Article  CAS  Google Scholar 

  • Drahota P, Raus K, Rychlíková E, Rohovec J (2018) Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environ Geochem Health 40(4):1495–1512. https://doi.org/10.1007/s10653-017-9999-1

    Article  CAS  Google Scholar 

  • EEA (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 Dec 2004. Relative to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J Eur Communities:3–16

  • EEA (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 200. On ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–44

    Google Scholar 

  • Ellickson KM, Meeker RJ, Gallo MA, Buckley BT, Lioy PJ (2001) Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Arch Environ Contam Toxicol 40(1):128–135. https://doi.org/10.1007/s002440010155

  • Ettler V, Kříbek B, Majer V, Knésl I, Mihaljevič M (2012) Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J Geochem Explor 113:68–75

    CAS  Google Scholar 

  • Ettler V, Štěpánek D, Mihaljevič M, Drahota P, Jedlicka R, Kříbek B, Vaněk A, Penížek V, Sracek O, Nyambe I (2020) Slag dusts from Kabwe (Zambia): contaminant mineralogy and oral bioaccessibility. Chemosphere. 260:127642. https://doi.org/10.1016/j.chemosphere.2020.127642

    Article  CAS  Google Scholar 

  • Falta T, Limbeck A, Koellensperger G, Hann S (2008) Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: a model study. Anal Bioanal Chem 390(4):1149–1157

    CAS  Google Scholar 

  • Gao P, Guo H, Zhang Z, Ou C, Hang J, Fan Q, He C, Wu B, Feng Y, Xing B (2018) Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid. Environ Pollut 242:1669–1677

    CAS  Google Scholar 

  • Gharaibeh AA, El-Rjoob A-WO, Harb MK (2010) Determination of selected heavy metals in air samples from the northern part of Jordan. Environ Monit Assess 160:425–429. https://doi.org/10.1007/s10661-008-0706-7

    Article  CAS  Google Scholar 

  • Goix S, Uzu G, Oliva P, Barraza F, Calas A, Castet S, Chincheros J (2016) Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. J Hazard Mater 317:552–562

    CAS  Google Scholar 

  • González-Maddux C, Marcotte A, Upadhyay N, Herckes P, Williams Y, Haxel G, Robinson M (2014) Elemental composition of PM2.5 in Shiprock, New Mexico, a rural community located near coal–burning power plants and abandoned uranium mine tailings sites. Atmos Pollut Res 5(3):511–519

    Google Scholar 

  • Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA, Witten ML (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44(12):4782–4788. https://doi.org/10.1021/es1001133

    Article  CAS  Google Scholar 

  • Guney M, Chapuis RP, Zagury GJ (2016) Lung bioaccessibility of contaminants in particulate matter of geological origin. Environ Sci Pollut Res 23(24):24422–24434

    CAS  Google Scholar 

  • Guney M, Bourges CM, Chapuis RP, Zagury GJ (2017) Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (<20 μm) from contaminated soils and mine tailings. Sci Total Environ 1(579):378–386. https://doi.org/10.1016/j.scitotenv.2016.11.086

    Article  CAS  Google Scholar 

  • Hall MN, Gamble MV (2012) Nutritional manipulation of one-carbon metabolisms: effects on arsenic methylation and toxicity. J Toxicol 2012:1–11

    Google Scholar 

  • Han J, Shang Q, Du Y (2009) Review: Effect of environmental cadmium pollution on human health. Health 1(3):159–166

    Google Scholar 

  • Hernández-Pellón A, Nischkauer W, Limbeck A, Fernández-Olmo I (2018) Metal(loid) bioaccessibility and inhalation risk assessment: a comparison between an urban and an industrial area. Environ Res 165:140–149

    Google Scholar 

  • Hu SW, Shy CM (2001) Health effects of waste incineration: a review of epidemiologic studies. J Air Waste Manage Assoc 51(7):1100–1109

    CAS  Google Scholar 

  • Hu C-W, Chao M-R, Wu K-Y, Chang-Chien G-P, Lee W-J, Chang LW, Lee W-S (2003) Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmos Environ 37:2845–2852. https://doi.org/10.1016/S1352-2310(03)00208-5

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

    CAS  Google Scholar 

  • Huertas J, Huertas M, Solis D (2012) Characterization of airborne particles in an open pit mining region. Sci Total Environ 423:39–46

    CAS  Google Scholar 

  • INAC (Indigenous and Northern Affairs Canada) (2007) Giant Mine Remediation Plan. Report of the Giant Mine Remediation Team-Department of Indian Affairs and Northern Development as submitted to the Mackenzie Valley Land and Water Board, Yellowknife, Canada, pp 260

  • INEGI (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Zimapán, Hidalgo. Instituto Nacional de Estadística, Geografía e Información. Disponible en: www.inegi.org.mx. Accessed 25 Feb 2018

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf. Accessed 23 Sept 2019

  • Islam MF, Majumder SS, Al Mamun A, Khan MB, Rahman MA, Salam A (2015) Trace metals concentrations at the atmosphere particulate matters in the southeast Asian mega city (Dhaka, Bangladesh). Open J Air Pollut 4:86–98. https://doi.org/10.4236/ojap.2015.42009

    Article  Google Scholar 

  • Juhasz AL, Weber J, Smith E (2011) Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. J Hazard Mater 186(2–3):1870–1879

    CAS  Google Scholar 

  • Juhasz AL, Gancarz D, Herde C, McClure S, Scheckel KG (2014) In situ formation of pyromorphite is not required for the reduction of in vivo Pb relative bioavailability in contaminated soils. Environ Sci Technol 48:7002–7009

    CAS  Google Scholar 

  • Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    CAS  Google Scholar 

  • Kastury F, Smith E, Karna RR, Scheckel KG, Juhasz AL (2018a) An inhalation-ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM 10. Sci Total Environ 631:92–104

    Google Scholar 

  • Kastury F, Smith E, Karna RR, Scheckel KG, Juhasz AL (2018b) Methodological factors influencing inhalation bioaccessibility of metal (loid)s in PM2.5 using simulated lung fluid. Environ Pollut 241:930–937

    CAS  Google Scholar 

  • Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Assess 90:1–21

    CAS  Google Scholar 

  • Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 108(10):941–947

    CAS  Google Scholar 

  • Lewis AS, Reid KR, Pollock MC, Campleman SL (2012) Speciated arsenic in air: measurement methodology and risk assessment considerations. J Air Waste Manage Assoc 62(1):2–17

    CAS  Google Scholar 

  • Li SW, Li HB, Luo J, Li HM, Qian X, Liu MM, Bi J, Cui X, Ma LQ (2016) Influence of pollution control on lead inhalation bioaccessibility in PM2.5: a case study of 2014 Youth Olympic Games in Nanjing. Environ Int 94:69–75

    CAS  Google Scholar 

  • Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S (2014) Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4:128–175. https://doi.org/10.3390/geosciences4030128

    Article  Google Scholar 

  • Matschullet J (2000) Arsenic in the geosphere - a review. Sci Total Environ 249:297–312

    Google Scholar 

  • Melaku S, Morris V, Raghavan D, Hosten C (2008) Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ Pollut 155(1):88–98

    CAS  Google Scholar 

  • Meza-Figueroa D, Maier RM, de la O-Villanueva M, Gomez-Alvarez A, Moreno-Zazueta A, Rivera J, Campillo A, Grandlic CJ, Anaya R, Palafox-Reyes J (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 77:140–147

    CAS  Google Scholar 

  • Midander K, Wallinder IO, Leygraf C (2007) In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut 145(1):51–59

    CAS  Google Scholar 

  • Moss O (1979) Simulants of lung interstitial fluid. Health Phys 36(3):447–448

    CAS  Google Scholar 

  • MSP (2010) Monitoreo de calidad del aire en la ciudad de Pucallpa marzo del 2010. Dirección General de Salud Ambiental. Ministerio de Salud de Perú, Uyacali, Perú 179 pp

    Google Scholar 

  • Mullins MJP, Norman JB (1994) Solubility of metals in windblown dust from mine waste dump sites. Appl Occup Environ Hyg 9:218–223

    CAS  Google Scholar 

  • Munir HS, Shaheen N (2008) Annual and seasonal variations of trace metals in atmospheric suspended particulate matter in Islamabad. Pakistan Water Air Soil Pollut 190:13–25. https://doi.org/10.1007/s11270-007-9575-x

    Article  CAS  Google Scholar 

  • Nie D, Wu Y, Chen M, Liu H, Zhang K, Ge P, Ge X (2018) Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmos Environ 186:1–8

    CAS  Google Scholar 

  • Ollson C, Smith E, Scheckel K, Betts A, Juhasz A (2016) Assessment o arsenic speciation and bioaccebility in mine-impacted materials. J Hazard Mater 313:130–137

    CAS  Google Scholar 

  • Ono FB, Tappero R, Sparks D, Guilherme LRG (2016) Investigation of arsenic species in tailings and windblown dust from a gold mining area. Environ Sci Pollut Res 23(1):638–647

    CAS  Google Scholar 

  • Phillips J (2016) Climate change and surface mining: A review of environment-human interactions & their spatial dynamics. Appl Geogr 74:95–108

    Google Scholar 

  • Rosa MJ, Benedetti C, Peli M, Donna F, Nazzaro M, Fedrighi C, Zoni S, Marcon A, Zimmearman N, Wright R, Lucchini R (2016) Association between personal exposure to ambient metals and respiratory disease in Italian adolescents: a cross-sectional study. BMC Pulm Med 16(1):1–6

    Google Scholar 

  • Roussel H, Waterlot C, Pelfrêne A, Pruvot C, Mazzuca M, Douay F (2010) Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch Environ Contam Toxicol 58(4):945–954

    CAS  Google Scholar 

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (1993) Que establece los métodos de medición para determinar la concentración de partículas suspendidas totales en el aire ambiente y el procedimiento para la calibración de los equipos de medición. Diario Oficial de la Federación. 18 de octubre de 1993

  • Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdörster G, Kreyling WG (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115(5):728–733

    CAS  Google Scholar 

  • SSA (Secretaria de Salud) (1994) Norma Oficial Mexicana NOM-026-SSA1-1993. Criterio para evaluar la calidad del aire ambiente con respecto al plomo (Pb). Valor normado para la concentración de plomo (Pb) en el aire ambiente como medida de protección a la salud de la población. Diario Oficial de la Federación. 23 de diciembre de 1994

  • SSA (Secretaria de Salud) (2014) Norma Oficial Mexicana NOM-025-SSA1-201. Salud ambiental. Valores límites permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. Diario Oficial de la Federación. 20 de agosto de 2014

  • Taylor MP, Davies PJ, Kristensen LJ, Csavina JL (2014) Licensed to pollute but not to poison the ineffectiveness of regulatory authorities at protecting public health from atmospheric arsenic, lead and other contaminants resulting from mining and smelting operations. Aeolian Res 14:35–52

    Google Scholar 

  • USEPA (1999a) Compendium of methods for the determination of inorganic compounds in ambient air, compendium method IO-3.1: selection, preparation and extraction of filter material. CERI-Office of Research and Development, USEPA, Cincinnati, OH

    Google Scholar 

  • USEPA (1999b) Compendium of methods for the determination of inorganic compounds in ambient air, compendium method IO-3.5: determination of metals in ambient particulate matter using atomic absorption (AA) spectroscopy. CERI-Office of Research and Development, USEPA, Cincinnati, OH

    Google Scholar 

  • USEPA (2008) National Ambient air quality standards for lead. Final Rule 73(219):66964–67062 100 pp

    Google Scholar 

  • Wang J, Hu Z, Chen Y, Chen Z, Xu S (2013) Contamination characteristics and possible sources of PM10 and PM2. 5 in different functional areas of Shanghai, China. Atmos Environ 68:221–229

    CAS  Google Scholar 

  • WHO (2000). Air Quality Guidelines. Second Edition. World Health Organization Regional Office for Europe. Guías, Copenhagen, Denmark 273 pp

  • Wiseman CLS, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos Environ 89:282–289

    CAS  Google Scholar 

  • Zota AR, Willis R, Jim R, Norris GA, Shine JP, Duvall RM, Schaider LA, Spengler JD (2009) Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. J Air Waste Manage Assoc 59:1347–1357

    CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the project: risk and vulnerability due to wind and lixiviates dispersion of mine residues PDCPN1023-01-215241. Thanks are given to the National Council of Science and Technology (CONACyT) for a master scholarship. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Although EPA contributed to this article, the research presented was not performed by or funded by EPA and was not subject to EPA’s quality system requirements.

Author information

Authors and Affiliations

Authors

Contributions

This publication is a product of collaboration of experts on different research fields. J.E.C.S. collaborated in the design and followed the experiments and the evaluation of results. M.C.G.C. participated with her knowledge on contamination by mine residues. R.C.G. contributed with his expertise on soil and environmental chemistry and the fate of elements in the environment. Both researchers designed the experiments, made sampling and chemical analysis, and wrote the manuscript. K.S. provided facilities, technical and operational guidance for synchrotron analysis, and discussion of these results. D.T.M. followed on analysis and discussion on TEM to study particle morphology and distribution in airborne samples. J.L.G.C. was involved in the statistical design and analysis of experiments. All authors read and approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Rogelio Carrillo González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Disclaimer

Consequently, the views, interpretations, and conclusions expressed in this article are solely those of the authors and do not necessarily reflect or represent EPA’s views or policies.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2398 kb)

ESM 2

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corona Sánchez, J.E., González Chávez, M.d.C.A., Carrillo González, R. et al. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ Sci Pollut Res 28, 19458–19472 (2021). https://doi.org/10.1007/s11356-020-11887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11887-6

Keywords

Navigation