Skip to main content

Advertisement

Log in

Aerosol properties in the atmosphere of Natal/Brazil measured by an AERONET Sun-photometer

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We analyzed data measured by a Sun-photometer of the RIMA-AERONET network with the purpose to characterize the aerosol properties in the atmosphere over Natal, state capital of Rio Grande do Norte, at the coast of Northeast Brazil. Aerosol Optical Depth, Ångström Exponent, Volume Size Distribution, Single Scattering Albedo, Complex Refractive Index, Asymmetry Factor, and Precipitable Water were analyzed from August 2017 to March 2018. In addition, MODIS and CALIOP observations, local Lidar measurements, and modeled backward trajectories were analyzed in a case study on February 9, 2018, that consistently confirmed the identification of a persistent aerosol layer below 4 km agl. Aerosols present in the atmosphere of Natal showed monthly mean Aerosol Optical Depth at 500 nm below 0.15 (~ 75%), monthly means of the Ångström Exponent at 440–670 nm between 0.30 and 0.70 (~ 69%), bimodal Volume Size Distribution is dominantly coarse mode, Single Scattering Albedo at 440 nm is 0.80, Refractive Index - Real Part around 1.50, Refractive Index - Imaginary Part ranging from 0.01 to 0.04, and the Asymmetry Factor ranged from 0.73 to 0.80. The aerosol typing during the measurement period showed that atmospheric aerosol over Natal is mostly composed of mixed aerosol (58.10%), marine aerosol (34.80%), mineral dust (6.30%), and biomass burning aerosols (0.80%). Backward trajectories identified that 51% of the analyzed air masses over Natal originated from the African continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available:

AERONET-RIMA network, aerosol properties (https://aeronet.gsfc.nasa.gov),

CALIOP/CALIPSO, aerosol subtype (https://www-calipso.larc.nasa.gov/products), MODIS/TERRA/AQUA, AOD (https://ladsweb.modaps.eosdis.nasa.gov),

HYSPLIT, model backward trajectories (https://www.ready.noaa.gov/hypub-bin/trajtype.pl),

Data of the DUSTER Lidar system belong to the Lidar Laboratory of the Department of Atmospheric and Climate Sciences (DCAC) at the Federal University of Rio Grande do Norte (UFRN), Natal, Brazil, and the Center for Lasers and Applications (CLA) at the Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, Brazil. Data are available from the corresponding author upon reasonable request and with permission of CLA/IPEN.

References

  • Abouchami W, Näthe K, Kumar A, Galer SJG, Jochum KP, Williams E, Horbe AMC, Rosa JWC, Balsam W, Adams D, Mezger K, Andreae MO (2013) Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin. Earth Planet Sci Lett 380:112–123. https://doi.org/10.1016/j.epsl.2013.08.028

    Article  CAS  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z. https://doi.org/10.1127/0941-2948/2013/0507

  • Ansmann A, Baars H, Tesche M et al (2009) Dust and smoke transport from Africa to South America: lidar profiling over Cape Verde and the Amazon rainforest. Geophys Res Lett. https://doi.org/10.1029/2009GL037923

  • Antuña-Marrero JC, Landulfo E, Estevan R et al (2017) LALINET: the first Latin American-born regional atmospheric observational network. Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-15-00228.1

  • Baars H, Ansmann A, Althausen D et al. (2011) Further evidence for significant smoke transport from Africa to Amazonia. Geophys Res Lett. https://doi.org/10.1029/2011GL049200

  • Baars H, Ansmann A, Althausen D et al (2012) Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J Geophys Res. https://doi.org/10.1029/2012JD018338

  • Ben-Ami Y, Koren I, Rudich Y et al (2010) Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study. Atmos Chem Phys. https://doi.org/10.5194/acp-10-7533-2010

  • Ben-Ami Y, Koren I, Altaratz O et al (2012) Discernible rhythm in the spatio/temporal distributions of transatlantic dust. Atmos Chem Phys. https://doi.org/10.5194/acp-12-2253-2012

  • Bennouna YS, Cachorro VE, Toledano C et al (2011) Comparison of atmospheric aerosol climatologies over southwestern Spain derived from AERONET and MODIS. Remote Sens Environ. https://doi.org/10.1016/j.rse.2011.01.011

  • Berjón A, Barreto A, Hernández Y et al (2019) A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic. Atmos Chem Phys. https://doi.org/10.5194/acp-19-6331-2019

  • BRAZILIAN INSTITUTE OF GEOGRAPHY AND STATISTICS (2020) Available in: https://cidades.ibge.gov.br/brasil/rn/natal/panorama. Accessed 9 Apr 2020 (in Portuguese)

  • BRAZILIAN NATIONAL INSTITUTE OF METEOROLOGY (2017) Available in: http://www.inmet.gov.br/portal/index.php?r=home2/index. Accessed 13 Nov 2017 (in Portuguese)

  • Cavalcanti IFA, Ferreira NJ, Silva MGAJS et al (2009) Tempo e Clima no Brasil. Oficina de Textos, São Paulo (in Portuguese)

    Google Scholar 

  • Coutinho MDL, Lima KC, Santos e Silva CM (2016) Improvements in precipitation simulation over South America for past and future climates via multi-model combination. Clim Dyn. https://doi.org/10.1007/s00382-016-3346-6

  • Da Silva FR (2015) Estudo do Desenvolvimento da Camada Limite Convectiva no Semiárido Brasileiro. Dissertation, Federal University of Rio Grande do Norte (in Portuguese)

  • Da Silva PE, Santos e Silva CM, Spyrides MHC et al (2018) Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int J Climatol. https://doi.org/10.1002/joc.5829

  • De Mazière M, Thompson AM, Kurylo MJ et al (2018) The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmos Chem Phys. https://doi.org/10.5194/acp-18-4935-2018

  • De Oliveira AM, Souza CT, Oliveira NPM et al (2019) Analysis of atmospheric aerosol optical properties in the Northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/CALIPSO Satellites, AERONET photometers and a ground-based lidar. Atmosphere. https://doi.org/10.3390/atmos10100594

  • Derimian Y, Karnieli A, Kaufman YJ et al (2008) The role of iron and black carbon in aerosol light absorption. Atmos Chem Phys. https://doi.org/10.5194/acp-8-3623-2008

  • Diniz MTM, Pereira VHC (2015) Climatologia do Estado do Rio Grande do Norte, Brasil: Sistemas Atmosféricos Atuantes e Mapeamento de Tipos de Clima. Bolet Goian Geogr. https://doi.org/10.5216/bgg.v35i3.38839 (in Portuguese)

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res. https://doi.org/10.1029/2000JD900282

  • Dubovik O, Holben BN, Eck TF et al. (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci. https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

  • Eck TF, Holben BN, Reid JS et al (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol. J Geophys Res. https://doi.org/10.1029/1999JD900923

  • Eck TF, Holben BN, Dubovik O et al (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res. https://doi.org/10.1029/2004JD005274

  • Eck TF, Holben BN, Sinyuk A et al (2010) Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J Geophys Res. https://doi.org/10.1029/2010JD014002

  • Feingold G, McComiskeyb A, Yamaguchia T et al (2016) New approaches to quantifying aerosol influence on the cloud radiative effect. PNAS. https://doi.org/10.1073/pnas.1514035112

  • Formenti P, Rajot JL, Desboeufs K et al (2008) Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J Geophys Res. https://doi.org/10.1029/2008JD009903

  • Foyo-Moreno I, Alados I, Guerrero-Rascado JL et al (2019) Contribution to column-integrated aerosol typing based on Sun-photometry using different criteria. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.03.007

  • Fuzzi S, Baltensperger U, Carslaw K et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys. https://doi.org/10.5194/acp-15-8217-2015

  • Galvão MFO, De Queiroz JDF, Duarte ESF (2016) Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers. Environ Pollut https://doi.org/10.1016/j.envpol.2016.10.024

  • Gasteiger J, Groβ S, Sauer D et al (2017) Particle settling and vertical mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in situ perspective. Atmos Chem Phys. https://doi.org/10.5194/acp-17-297-2017

  • Giles DM, Holben BN, Eck TF et al. (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res. https://doi.org/10.1029/2012JD018127

  • Giles DM, Sinyuk A, Sorokin MG et al (2019) Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database – automated near real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Meas Tech. https://doi.org/10.5194/amt-12-169-2019

  • Gomes HB, Ambrizzi T, Herdies DL et al (2015) Easterly wave disturbances over Northeast Brazil: an observational analysis. Hindawi Publishing Corporation. Adv Meteorol. https://doi.org/10.1155/2015/176238

  • Guerrero-Rascado JL, Olmo FJ, Avilés-Rodriguez I et al (2009) Extreme Saharan dust event over the southern Iberian Peninsula in September 2007: active and passive remote sensing from surface and satellite. Atmos Chem Phys. https://doi.org/10.5194/acp-9-8453-2009

  • Guerrero-Rascado JL, Landulfo E, Antuña JC et al (2016) Latin American Lidar Network (LALINET) for aerosol research: diagnosis on network instrumentation. J Atmos Sol Terr Phys. https://doi.org/10.1016/j.jastp.2016.01.001

  • Hamill P, Giordano M, Ward C et al (2016) An AERONET-based aerosol classification using the Mahalanobis distance. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2016.06.002

  • Hansen JE, Travis LD (1974) Light scattering in planetary atmospheres. Space Sci Rev. https://doi.org/10.1007/BF00168069

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res. https://doi.org/10.1029/96JD03436

  • Hastenrath S (1991) Climate dynamics of the tropics. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Hoelzemann JJ, Longo KM, Fonseca RM (2009) Regional representativity of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS Aerosol Optical Depth. J Geophys Res. https://doi.org/10.1029/2008JD010369

  • Holben BN, Eck TF, Slutsker I et al (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ. https://doi.org/10.1016/S0034-4257(98)00031-5

  • Holben BN, Tanré D, Smirnov A et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res. https://doi.org/10.1029/2001JD900014

  • Holben BN, Eck TF, Slutsker I et al (2006) AERONET’s Version 2.0 quality assurance criteria. Remote Sens Atmos Clouds. https://doi.org/10.1117/12.706524

  • Illingworth AJ, Barker HW, Beljaars A et al (2015) The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-12-00227.1

  • INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (2013) Climate change 2013: the physical science basis. Cambridge University Press, New York

    Google Scholar 

  • INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (2018) Special report: global warming of 1.5 °C. Cambridge University Press, New York

    Google Scholar 

  • James PE (1939) Air masses and fronts in South America. Geogr Rev. Taylor & Francis, Ltd. http://www.jstor.org/stable/210071

  • Jeong U, Tsay SC, Pantina P et al (2018) Langley calibration analysis of solar spectroradiometric measurements: spectral aerosol optical thickness retrievals. J Geophys Res Atmos. https://doi.org/10.1002/2017JD028262

  • Junior FCV, Jones C, Gandu AW (2018) Interannual and intraseasonal variations of the onset and demise of the pre-wet season and the wet season in the Northern Northeast Brazil. Rev Bras Meteorol. https://doi.org/10.1590/0102-7786333007

  • Karyampudi VM, Carlson TN (1988) Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J Atmos Sci. https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2

  • Karyampudi VM, Palm SP, Reagen JA et al (1999) Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull Am Meteorol Soc. https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2

  • Kaufman YJ (1993) Aerosol optical thickness and atmospheric path radiance. J Geophys Res. https://doi.org/10.1029/92JD02427

  • Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosol in the climate system. Nat Publ Group. https://doi.org/10.1038/nature01091

  • Kaufman YJ, Koren I, Remer LA et al (2006) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res. https://doi.org/10.1029/2003JD004436

  • Kim MH, Omar AH, Tackett JL et al (2018) The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos Meas Tech. https://doi.org/10.5194/amt-11-6107-2018

  • Knobelspiesse KD, Pietras C, Fargion GS et al (2004) Maritime aerosol optical thickness measured by handheld sun photometers. Remote Sens Environ. https://doi.org/10.1016/j.rse.2004.06.018

  • Koren I, Kaufman YJ, Remer LA et al (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science. https://doi.org/10.1126/science.1089424

  • Koren I, Martins JV, Remer LA et al (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321:946–949. https://doi.org/10.1126/science.1159185

    Article  CAS  Google Scholar 

  • Koren I, Altaratz O, Dagan G (2015) Aerosol effect on the mobility of cloud droplets. Environ Res Lett. https://doi.org/10.1088/1748-9326/10/10/104011

  • Kumar A, Abouchami W, Galer SJG et al (2014) A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2013.10.021

  • Landulfo E, Lopes FJS, Montilla-Rosero E et al (2016) DUSTER Lidar: Transatlantic transport of aerosol particles from the Sahara and other sources: first results from the recently installed Lidar and sunphotometer in Natal/Brazil. Proceedings of SPIE, the International Society for Optical Engineering. https://doi.org/10.1117/12.2241386

  • Levy RC, Remer LA, Kleidman RG et al (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys. https://doi.org/10.5194/acp-10-10399-2010

  • Liu Z, Omar A, Vaughan M et al (2008) CALIPSO lidar observations of the optical properties of Saharan dust: a case study of long-range transport. J Geophys Res. https://doi.org/10.1029/2007JD008878

  • Marengo JA, Alves LM, Beserra EA et al. (2011) Variabilidade e mudanças climáticas no semiárido brasileiro. Recursos hídricos em regiões áridas e semiáridas, Campina Grande (in Portuguese)

  • Marengo JÁ, Torres RR, Alves LM (2016) Drought in Northeast Brazil-past, present, and future. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1840-8

  • Mateos D, Cachorro VE, Toledano C et al (2015) Columnar and surface aerosol load over the Iberian Peninsula establishing annual cycles, trends, and relationships in five geographical sectors. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.03.002

  • Melo ABC et al (2009) Zona de Convergência Intertropical do Atlântico. In: Cavalcanti IFA et al (eds) Tempo e Clima no Brasil, 1st edn. Oficina de Textos, São Paulo, pp 25–39 (in Portuguese)

    Google Scholar 

  • Molion LCB, Bernardo SDO (2002) Uma revisão da dinâmica das chuvas no Nordeste brasileiro. Revista Brasileira de Meteorologia. Available in: http://www.scielo.br/scielo.php?script=sci_serial&pid=0102-7786&lng=en&nrm=iso Accessed 23 March 2018 (in Portuguese)

  • Moran-Zuloaga D, Ditas F, Walter D et al (2018) Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmos Chem Phys. https://doi.org/10.5194/acp-18-10055-2018

  • Motta AG (2004) O CLIMA DE NATAL. Instituto Nacional de Pesquisas Espaciais, São José dos Campos. Available in: http://mtcm16.sid.inpe.br/col/sid.inpe.br/marciana/2004/10.21.09.04/doc/LivroClima.pdf Accessed 15 April 2017 (in Portuguese)

  • Muyimbwa D, Frette Ø, Stamnes JJ et al (2015) Aerosol optical properties and precipitable water vapor column in the atmosphere of Norway. Appl Opt. https://doi.org/10.1364/AO.54.001505

  • National Institute of Space Research (2020) Available in: http://queimadas.dgi.inpe.br/queimadas/bdqueimadas. Accessed 14 Apr 2020 (in Portuguese)

  • Nishizawa T, Sugimoto N, Matsui I et al (2016) The Asian dust and aerosol lidar observation network (AD-Net): strategy and progress. EPJ Web Conf. https://doi.org/10.1051/epjconf/201611919001

  • O’Neill NT, Ignatov A, Holben BN et al (2000) The lognormal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sunphotometer data. Geophys Res Lett. https://doi.org/10.1029/2000GL011581

  • O’Neill NT, Dubovik O, Eck TF (2001) Modified Ångström exponent for the characterization of submicrometer aerosol. Appl Opt. https://doi.org/10.1364/AO.40.002368

  • Oliveira PT, Santos e Silva CM, Lima KC (2016) Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1865-z

  • Olmo FJ, Quirantes A, Alcántara A et al (2006) Preliminary results of a non-spherical aerosol method for the retrieval of the atmospheric aerosol optical properties. J Quant Spectrosc Radiat Transf. https://doi.org/10.1016/j.jqsrt.2005.11.047

  • Olmo FJ, Quirantes A, Lara V et al (2008) Aerosol optical properties assessed by an inversion method using the solar principal plane for non-spherical particles. J Quant Spectrosc Radiat Transf. https://doi.org/10.1016/j.jqsrt.2007.12.019

  • Omar AH, Winker DM, Kittaka C et al (2009) The CALIPSO automated aerosol classification and Lidar Ratio Selection Algorithm. J Atmos Ocean Technol. https://doi.org/10.1175/2009JTECHA1231.1

  • Omar AH, Winker DM, Tackett JL et al (2013) CALIOP and AERONET aerosol optical depth comparisons: one size fits none. J Geophys Res. https://doi.org/10.1002/jgrd.50330

  • Orza JAG, Perrone MR (2015) Trends in the aerosol load properties over south eastern Italy. IOP Conf Ser: Earth Environ Sci. https://doi.org/10.1088/1755-1315/28/1/012011

  • Paixão MMA (2011) Propriedades Ópticas de Aerossóis Naturais de Queimadas da Amazônia. Dissertation, University of São Paulo. (in Portuguese)

  • Pappalardo G, Amodeo A, Apituley A et al (2014) EARLINET: towards an advanced sustainable European aerosol lidar network. Atmos Meas Tech. https://doi.org/10.5194/amt-7-2389-2014

  • Perrone MR, Santese M, Tafur AM et al (2005) Aerosol load characterization over South–East Italy for one year of AERONET sun-photometer measurements. Atmos Res. https://doi.org/10.1016/j.atmosres.2004.12.003

  • Prats N, Cachorro VE, Sorribas M et al (2008) Columnar aerosol optical properties during “El Arenosillo 2004 summer campaign”. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2007.07.041

  • Reboita MS, Gan MA, Da Rocha RP et al. (2010) Regimes de Precipitação na América do Sul: Uma Revisão Bibliográfica. Rev Bras Meteorol. https://doi.org/10.1590/S0102-77862010000200004 (in Portuguese)

  • Reboita MS, Krusche N, Ambrizzi T et al (2012) Entendendo o Tempo e o Clima na América do Sul. Ter e Didát. https://doi.org/10.20396/td.v8i1.8637425 (in Portuguese)

  • Reboita MS, Rodrigues M, Armando RP et al (2016) Causas da Semi-aridez do Sertão Nordestino. Rev Bras Climatol. https://doi.org/10.5380/abclima.v19i0.42091(in Portuguese)

  • Remer LA, Kaufman YJ, Tanré D et al (2005) The MODIS Aerosol Algorithm, Products, and Validation. J Atmos Sci. https://doi.org/10.1175/JAS3385.1

  • Rizzo LV, Artaxo P, Müller T et al (2013) Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmos Chem Phys. https://doi.org/10.5194/acp-13-2391-2013

  • Rodríguez S, Calzolai G, Chiari M et al (2020) Rapid changes of dust geochemistry in the Saharan Air Layer linked to sources and meteorology. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2019.117186

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, New Jersey

    Google Scholar 

  • Seinfeld JH, Bretherton C, Carslaw KS et al (2016) Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. PNAS. https://doi.org/10.1073/pnas.1514043113

  • Sena ET, Artaxo P (2015) A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols. Atmos Chem Phys. https://doi.org/10.5194/acp-15-5471-2015

  • Sinyuk A, Holben BN, Eck TF et al (2020) The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos Meas Tech. https://doi.org/10.5194/amt-13-3375-2020

  • Smirnov A, Holben BN, Kaufman YJ et al (2002) Optical properties of atmospheric aerosol in maritime environments. J Atmos Sci. https://doi.org/10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2

  • Sokolik IN, Toon OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res. https://doi.org/10.1029/1998JD200048

  • Stein AR, Draxler G, Rolph B et al (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-14-00110.1

  • Swap R, Garstang M, Greco S (1992) Saharan dust in the Amazon Basin. Tellus. https://doi.org/10.3402/tellusb.v44i2.15434

  • Talbot RW, Andreae MO, H B et al (1990) Aerosol chemistry during the wet season in central Amazonia: the influence of long-range transport. J Geophys Res. https://doi.org/10.1029/JD095iD10p16955

  • Tan F, Lim S, Abdullah K et al (2015) AERONET data–based determination of aerosol types. Atmos Pollut Res. https://doi.org/10.5094/APR.2015.077

  • Taylor M, Kazadzisa S, Amiridis V et al (2015) Global aerosol mixtures and their multiyear and seasonal characteristics. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2015.06.029

  • Thorsen TJ, Ferrare RA, Kato S et al (2020) Aerosol direct radiative effect sensitivity analysis. J Clim. https://doi.org/10.1175/JCLI-D-19-0669.1

  • Toledano C, Cachorro VE, Berjón A et al (2007) Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q J R Meteorol Soc. https://doi.org/10.1002/qj.54

  • Toledano C, Cachorro VE, De Frutos AM et al (2009) Airmass classification and analysis of aerosol types at El Arenosillo (Spain). J Appl Meteorol Climatol. https://doi.org/10.1175/2008JAMC2006.1

  • Tsamalis C, Chédin A, Pelon J et al (2013) The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmos Chem Phys. https://doi.org/10.5194/acp-13-11235-2013

  • Valenzuela A, Olmo FJ, Lyamani H et al. (2010) Aerosol properties retrieved from sky radiance at the principal plane for nonspherical particles. IV Reunión Española de Ciencia y Tecnología del Aerosol - RECTA 2010

  • Vergaz R, Cachorro VE, De Frutos AM et al (2005) Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain). Int J Climatol. https://doi.org/10.1002/joc.1208

  • Wagner F, Silva AM (2008) Some considerations about Ångström exponent distributions. Atmos Chem Phys. https://doi.org/10.5194/acp-8-481-2008

  • Wang Q, Saturno J, Chi X et al (2016) Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmos Chem Phys. https://doi.org/10.5194/acp-16-14775-2016

  • Wehrli C (2000) PFR precision filter radiometer documentation. World Radiation Center, Observatorium, Davos

    Google Scholar 

  • Weinzierl B, Sauer D, Esselborn M et al (2011) Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region – an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus. https://doi.org/10.1111/j.1600-0889.2011.00566.x

  • Welton EJ, Campbell JR, Spinhirne JD et al (2001) Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Proc SPIE 4153:151–158

    Article  Google Scholar 

  • Winker DM, Vaughan MA, Omar A et al (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol. https://doi.org/10.1175/2009JTECHA1281.1

Download references

Acknowledgments

We thank the University of Granada (UGR), Andalusian Institute for Earth System Research (IISTA-CEAMA), Spain, especially Lucas Alados-Arboledas and Juan Luis Guerrero-Rascado and the RIMA network for making the Cimel Sun-photometer available in Natal and for continuous scientific discussions. We thank IF/USP, specifically Prof. Paulo Artaxo, for generous technical support and Dr. Aline Macedo de Oliveira (PPGCC/UFRN) and Dr. Ediclê de Souza Fernandes Duarte (PPGCC/UFRN) for contributions to some of the graphics and discussion of its data. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this publication. The authors wish to also acknowledge the entire CALIPSO team for their substantial contributions and for the data obtained from the NASA Langley Research Center. This article and the research behind it are a direct contribution to the research themes of the Klimapolis Laboratory (klimapolis.net). Networking and coordination activities of the Klimapolis Laboratory are funded by the German Federal Ministry of Education and Research (BMBF).

Funding

University of Granada, Andalusian Institute for Earth System Research (IISTA-CEAMA), Spain: deployment of the Cimel sun-photometer to São Paulo, support in setting up the instrument, and continuous support with the measurements.

Nuclear and Energy Research Institute (IPEN/CNEN), Center for Lasers and Applications (CLA) at the São Paulo, Brazil: deployment of the Cimel sun-photometer to Natal, local and remote support in setting up the instrument, and continuous support with the measurements, support in analysis, and interpretation of data and in writing the manuscript.

University of São Paulo, Institute for Physics (IF/USP): deployment of technical support to Natal, sensor maintenance, continuous support with instrumental issues, support in analysis, and interpretation of data.

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/MCTIC), Brazil, for the master student scholarship of DCFSO.

The National Council for Scientific and Technological Development (CNPq), Brazil, supported the research with a postdoc grant (150716/2017-6) for FJSL and funded the research projects 479252/2011-4, 477713/2013-0, 400430/2014-2, and 432515/2018-6 that allowed to bring the Cimel sun-photometer to Natal, equip the Lidar laboratory at DCAC/UFRN, of which the instrument is part, and permitted carrying out the analyses.

Author information

Authors and Affiliations

Authors

Contributions

This work is based on the master thesis of the first author, Daniel Camilo Fortunato dos Santos Oliveira (DCFSO, who is now Master in Climate Sciences (2019), under supervision of JJH). Contributions of all authors to this work were as follows: Instrument installation and maintenance: DCFSO, EMR, FCM, JJH. Conceptualization: EMR, FJSL, EL, JJH. Methodology: DCFSO, EMR, FJSL, EL, JJH. Formal analysis: DCFSO, JJH. Validation: DCFSO, JJH. Visualization: DCSFO, FJSL, FCM. Writing - original draft: DCFSO, JJH. Writing - review and editing: DCFSO, FJSL, FCM, JJH. Project administration: EL, JJH. Funding acquisition: EL, JJH. Resources: EL, JJH. Software: DCFSO, EMR, FJSL.

Corresponding author

Correspondence to Judith Johanna Hoelzemann.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato dos Santos Oliveira, D.C., Montilla-Rosero, E., da Silva Lopes, F.J. et al. Aerosol properties in the atmosphere of Natal/Brazil measured by an AERONET Sun-photometer. Environ Sci Pollut Res 28, 9806–9823 (2021). https://doi.org/10.1007/s11356-020-11373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11373-z

Keywords

Navigation