Skip to main content

Advertisement

Log in

A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mesocosms are real-world environmental science tools for bridging the gap between laboratory-scale experiments and actual habitat studies on ecosystem complexities. These experiments are increasingly being applied in understanding the complex impacts of heavy metals, ocean acidification, global warming, and oil spills. The insights of the present review indicate how metals and metal-bound activities impact on various aspects of ecological complexities like prey predator cues, growth, embryonic development, and reproduction. Plankton and benthos are used more often over fish and microbes owing to their smaller size, faster reproduction, amenability, and repeatability during mesocosm experiments. The results of ocean acidification reveal calcification of plankton, corals, alteration of pelagic structures, and plankton blooms. The subtle effect of oil spills is amplified on sediment microorganisms, primary producers, and crustaceans. An overview of the mesocosm designs over the years indicates that gradual changes have evolved in the type, size, design, composition, parameters, methodology employed, and the outputs obtained. Most of the pelagic and benthic mesocosm designs involve consideration of interactions within the water columns, between water and sediments, trophic levels, and nutrient rivalry. Mesocosm structures are built considering physical processes (tidal currents, turbulence, inner cycling of nutrients, thermal stratification, and mixing), biological complexities (population, community, and ecosystem) using appropriate filling containers, and sampling facilities that employ inert materials. The principle of design is easy transportation, mooring, deployment, and free floating structures besides addressing the unique ecosystem-based science problems. The evolution of the mesocosm tools helps in understanding further advancement of techniques and their applications in marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data related to this publication are made available in the article.

References

  • Alexander AC, Luiker E, Finley M, Culp JM (2016) Mesocosm and field toxicity testing in the marine context. InMarine ecotoxicology 239-256) academic press

  • Alguero-Muniz M, Alvarez-Fernandez S, Thor P, Bach LT, Esposito M, Horn HG, Ecker U, Langer JA, Taucher J, Malzahn AM, Riebesell U (2017) Ocean acidification effects on mesozooplankton community development: results from a long-term mesocosm experiment. PLoS One 12(4):e0175851

    Google Scholar 

  • Arnold HE, Kerrison P, Steinke M (2013) Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore E miliania huxleyi. Global Change Biol. (4):1007-16

  • Bach LT, Taucher J, Boxhammer T, Ludwig A, Kristineberg KOSMOS Consortium, Achterberg EP, Algueró-Muñiz M, Anderson LG, Bellworthy J, Büdenbender J, Czerny J (2016) Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS One 11(8):e0159068

    Google Scholar 

  • Balthis WL, Hyland JL, Fulton MH, Pennington PL, Cooksey C, Key PB, DeLorenzo ME, Wirth EF (2010) Effects of chemically spiked sediments on estuarine benthic communities: a controlled mesocosm study. Environ Monit Assess 161(1–4):191–203

    CAS  Google Scholar 

  • Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 79:272–282

    CAS  Google Scholar 

  • Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, Shukor MY (2019) In vivo and in vitro effects on cholinesterase of blood of Oreochromis mossambicus by copper. 3. Biotech 9(2):64

    Google Scholar 

  • Benaduce APS, Kochhann D, Flores EM, Dressler VL, Baldisserotto B (2008) Toxicity of cadmium for silver catfish Rhamdia quelen (Heptapteridae) embryos and larvae at different alkalinities. Arch Environ Contam Toxicol 54(2):274–282

    CAS  Google Scholar 

  • Bere T, Tundisi JG (2011) Toxicity and sorption kinetics of dissolved cadmium and chromium III on tropical freshwater phytoperiphyton in laboratory mesocosm experiments. Sci Total Environ 409(22):4772–4780

    CAS  Google Scholar 

  • Bere T, Tundisi JG (2012) Cadmium and lead toxicity on tropical freshwater periphyton communities under laboratory-based mesocosm experiments. Hydrobiologia 680(1):187–197

    CAS  Google Scholar 

  • Berge JA, Brevik EM (1996) Uptake of metals and persistent organochlorines in crabs (Cancer pagurus) and flounder (Platichthys flesus) from contaminated sediments: mesocosm and field experiments. Mar Pollut Bull 33(1–6):46–55

    CAS  Google Scholar 

  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 96(1):32–48

    CAS  Google Scholar 

  • Brockmann UH, Dahl E, Kuiper J, Kattner G (1983) The concept of POSER (plankton observation with simultaneous enclosures in Rosfjorden). Mar Ecol Prog Ser 14:1–8

    Google Scholar 

  • Bruckner A, Wright J, Kampichler C, Bauer R, Kandeler E (1995) Amethod of preparing mesocosms for assessing complex biotic processes in soils. Biol Fertil Soils 19:257–262

    Google Scholar 

  • Bryan GH (1979) Bioaccumulation in marine organisms. Philos Transact R Soc Lond 286:483–505

    CAS  Google Scholar 

  • Buffet PE, Richard M, Fanny Caupos F, Vergnoux A, Perrein-Ettajani H, Luna-Acosta A, Akcha F, Amiard J-C, Amiard-Triquet C, Guibbolini M, Risso-De Faverney C, Thomas-Guyon H, Reip P, Dybowska A, Berhanu D, Valsami-Jones E, Mouneyrac C (2012) A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environ Sci Technol 47(3):1620–1628

    Google Scholar 

  • Buffet PE, Zalouk-Vergnoux A, Châtel A, Berthet B, Métais I, Perrein-Ettajani H, Poirier L, Luna-Acosta A, Thomas-Guyon H, Risso-de Faverney C, Guibbolini M (2014) A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Sci Total Environ 470:1151–1159

    Google Scholar 

  • Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162(2):185–190

    CAS  Google Scholar 

  • Cardoso PG, Lillebø AI, Lopes CB, Pereira E, Duarte AC, Pardal MA (2008) Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: a mesocosms laboratory experiment. Mar Pollut Bull 56(2):325–334

    CAS  Google Scholar 

  • Cardoso PG, Pereira E, Grilo TF, Duarte AC, Pardal MA (2012) Kinetics of mercury bioaccumulation in the polychaete Hediste diversicolor and in the bivalve Scrobicularia plana, through a dietary exposure pathway. Water Air Soil Pollut 223(1):421–428

    CAS  Google Scholar 

  • Crossland NO, La Point TW (1992) The design of mesocosm experiments. Environ ToxicolChem 11:1–4

    Google Scholar 

  • Das S, Tseng LC, Chou C, Wang L, Souissi S, Hwang JS (2019) Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ Sci Pollut R1-11

  • Davies JM, Gamble JC (1979) Experiments with large enclosed ecosystems. Philosophical transactions of the Royal Society of London. B Biol Sci 286(1015):523–544

    CAS  Google Scholar 

  • De TK, De M, Das S, Ray R, Ghosh PB (2010) Level of heavy metals in some edible marine fishes of mangrove dominated tropical estuarine areas of Hooghly River, North East Coast of bay of Bengal, India. Bull Environ Contam Toxicol 85(4):385–390

    CAS  Google Scholar 

  • Della Torre C, Tornambè A, Cappello S, Mariottini M, Perra G, Giuliani S, Amato E, Falugi C, Crisari A, Yakimov MM, Magaletti E (2012) Modulation of CYP1A and genotoxic effects in European seabass (Dicentrarchus labrax) exposed to weathered oil: a mesocosm study. Mar Environ Res 76:48–55

    CAS  Google Scholar 

  • Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VM, Santisi S, Cappello S, Oliveira VM (2016) Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Mar Pollut Bull 107(1):107–117

    CAS  Google Scholar 

  • Donaghay PL, Klos E (1985) Physical, chemical and biological responses to simulated wind and tidal mixing in experimental marine ecosystems. Mar Ecol Prog Ser 26:35–45

    Google Scholar 

  • El-Sorogy AS, El Kammar A, Ziko A, Aly M, Nour H (2013) Gastropod shells as pollution indicators, Red Sea coast, Egypt. J Afr Earth Sci 87:93–99

    CAS  Google Scholar 

  • Fabrizio F, Rodolfo C (2012) The response of benthic foraminiferal assemblages to copper exposure: a pilot mesocosm investigation. J Environ Prot 3(04):342–352

    CAS  Google Scholar 

  • Farlow JA, (2014) Chronic toxicity of nano metallics on red swamp crayfish (Procambarus clarkii) in laboratory and mesocosm studies, LSU Master’s Theses:1141

  • Faucher G, Hoffmann LJ, Bach LT, Bottini C, Erba E, Riebesell U (2017) Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of cretaceous stress. Biogeosciences (BG) 14(14):3603–3613

    CAS  Google Scholar 

  • Fouilland E, Trottet A, Alves-de-Souza C, Bonnet D, Bouvier T, Bouvy M, Boyer S, Guillou L, Hatey E, Jing H, Leboulanger C (2017) Significant change in marine plankton structure and carbon production after the addition of river water in a mesocosm experiment microb. Ecol. 74(2):289–301

    CAS  Google Scholar 

  • Franco ME (2017) A Mesocosm assessment of the Ecotoxicological effects of crude oil in two species of fiddler crabs (Uca spp.) from the northern Gulf of Mexico. University of Louisiana at Lafayette

  • Frontalini F, Semprucci F, Di Bella L, Caruso A, Cosentino C, Maccotta A, Scopelliti G, Sbrocca C, Bucci C, Balsamo M, Martins MV (2018) The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: results from mesocosm experiments. Environ Toxicol Chem 37(9):2439–2447

    CAS  Google Scholar 

  • Gama-Flores JL, Sarma SSS, Nandini S (2006) Effect of cadmium level and exposure time on the competition between zooplankton species Moina macrocopa (Cladocera) and Brachionus calyciflorus (Rotifera). J Environ Sci Health, Part A 41(6):1057–1070

    CAS  Google Scholar 

  • Gazeau F, Sallon A, Maugendre L, Louis J, Dellisanti W, Gaubert M, Lejeune P, Gobert S, Borges AV, Harlay J, Champenois W (2017) First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project). Estuar. Coast. Shelf Sci 186:11–29

    CAS  Google Scholar 

  • Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L (2014) Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front Microbiol 5:162

    Google Scholar 

  • Gertler C, Näther DJ, Gerdts G, Malpass MC, Golyshin PN (2010) A mesocosm study of the changes in marine flagellate and ciliate communities in a crude oil bioremediation trial. Microb Ecol 60(1):180–191

    CAS  Google Scholar 

  • Giannakourou A, Androni A, Dimitriou D, Frangoulis C, Giannoudi L, Konstadinopoulou A, Lagaria A, Papageorgiou N, Psarra S, Tsagaraki TM, Tsiola A (2016) The combined effect of ocean acidification and temperature increase on planktonic communities in the E. Mediterranean: a mesocosm experiment

  • Giovagnetti V, Brunet C, Conversano F, Tramontano F, Obernosterer I, Ridame C, Guieu C (2013) Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the Mediterranean Sea. Biogeosciences 10:2973–2991

    CAS  Google Scholar 

  • González J, Fernández E, Figueiras FG, Varela M (2013) Subtle effects of the water soluble fraction of oil spills on natural phytoplankton assemblages enclosed in mesocosms. Estuar Coast Shelf Sci 124:13–23

    Google Scholar 

  • Grosell M (2011) Copper of the fish physiology. In: wood, C.M., Farrell, a.P., Brau- ner, C.J. (Eds.), homeostasis and toxicology of essential metals, 31A. A cademic press, NewYork, USA, 53–133, Elsevier Inc

  • Gustafsson M, Dahllöf I, Blanck H, Hall P, Molander S, Nordberg K (2000) Benthic foraminiferal tolerance to tri-n-butyltin (TBT) pollution in an experimental mesocosm. Mar Pollut Bull 40(12):1072–1075

    CAS  Google Scholar 

  • Hinrichsen D (2016) Our common seas: coasts in crisis. Routledge

  • Hosokawa S, Konuma S, Nakamura Y (2016) Accumulation of trace metal elements (Cu, Zn, Cd, and Pb) in surface sediment via decomposed Seagrass leaves: a Mesocosm experiment using Zostera marina L. PLoS One 11(6):e0157983

    Google Scholar 

  • Huang Y, Liu X, Laws EA, Chen B, Li Y, Xie Y, Wu Y, Gao K, Huang B (2018) Effects of increasing atmospheric CO2 on the marine phytoplankton and bacterial metabolism during a bloom: a coastal mesocosm study. Sci Total Environ 633:618–629

    CAS  Google Scholar 

  • Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011) Bioaccumulation of metals in tissues of marine animals, part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20(5):1117–1125

    CAS  Google Scholar 

  • Jarvis TA, Bielmyer-Fraser GK (2015) Accumulation and effects of metal mixtures in two seaweed species. Comp Biochem Physiol Part C: Toxicol Pharmacol 171:28–33

    CAS  Google Scholar 

  • Johnson KA, Steinman AD, Keiper William D, Ruetz CR (2011) Biotic response of low concentration urban runoff. J N Am Benthol Soc 30:710–727

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483

    Google Scholar 

  • Kwan CK, Sanford E, Long J (2015) Copper pollution increases the relative importance of predation risk in an aquatic food web. PLoS One 10(7):e0133329

    Google Scholar 

  • Larramendy ML (2017) editor. Ecotoxicology and genotoxicology: non-traditional terrestrial models. Royal Society of Chemistry

  • Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47(2):558–564

    CAS  Google Scholar 

  • Lee JH, Birch GF, Simpson SL (2016) Metal-contaminated resuspended sediment particles are a minor metal-uptake route for the Sydney rock oyster (Saccostrea glomerata)—a mesocosm study, Sydney Harbour estuary, Australia. Mar Pollut Bull 104(1–2):190–197

    CAS  Google Scholar 

  • Lin C, He M, Liu S, Li Y (2012) Contents, enrichment, toxicity and baselines of trace elements in the estuarine and coastal sediments of the Daliao River System, China. Geochem J 46:371–380

    CAS  Google Scholar 

  • Lindh MV, Riemann L, Baltar F, Romero-Oliva C, Salomon PS, Granéli E, Pinhassi J (2013) Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the. Baltic Sea Env Microbiol Rep 5(2):252–262

    CAS  Google Scholar 

  • Liu H, Cao Y, Li W, Zhang Z, Jeppesen E, Wang W (2017a) The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study. Environ Sci Pollut Res 24(18):15308–15314

    CAS  Google Scholar 

  • Liu X, Li Y, Wu Y, Huang B, Dai M, Fu F, Hutchins DA, Gao K (2017b) Effects of elevated CO 2 on phytoplankton during a mesocosm experiment in the southern eutrophicated coastal water of China. Sci Rep 7(1):1–4

    Google Scholar 

  • Madhupratap M, Achuthankutty CT, Nair SR (1981) Toxicity of some heavy metals to copepods Acartia spinicauda and Tortanus forcipatus. Indian J Mar Sci 10:382–383

    CAS  Google Scholar 

  • Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343(2):217–226

    CAS  Google Scholar 

  • Mandich M (2018) Ranked effects of heavy metals on marine bivalves in laboratory mesocosms: a meta-analysis. Mar Pollut Bull 131:773–781

    CAS  Google Scholar 

  • Maugendre L, Gattuso JP, Poulton AJ, Dellisanti W, Gaubert M, Guieu C, Gazeau F (2017) No detectable effect of ocean acidification on plankton metabolism in the NW oligotrophic Mediterranean Sea: results from two mesocosm studies. Estuar. Coast. Shelf Sci 186:89–99

    CAS  Google Scholar 

  • Mayor DJ, Gray NB, Elver-Evans J, Midwood AJ, Thornton B (2013) Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments. PLoS One 8(5):e64940

    CAS  Google Scholar 

  • Menzel DW, Case J (1977) Concept and design: controlled ecosystem pollution experiment. Bull mar Sci 27(1):1-7 methylmercury to population-relevant endpoints. Aquat Toxicol 86:470–484

    Google Scholar 

  • Mouneyrac C, Buffet PE, Poirier L, Zalouk-Vergnoux A, Guibbolini M, Risso-de Faverney C, Gilliland D, Berhanu D, Dybowska A, Châtel A, Perrein-Ettajni H (2014) Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ Sci Pollut Res 21(13):7899–7912

    CAS  Google Scholar 

  • Muller FL, Jacquet S, Wilson WH (2003) Biological factors regulating the chemical speciation of Cu, Zn, and Mn under different nutrient regimes in a marine mesocosm experiment. Limnol Oceanogr 48(6):2289–2302

    CAS  Google Scholar 

  • Murphy CA, Rose KA, Alvarez M, Fuiman LA (2008) Modeling larval fish behavior: scaling the sublethal effects of Nayar S, Goh BPL, Chou LM (2004) environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol Environ Saf 59(3):349–369

    Google Scholar 

  • Nayar S, Goh BPL, Chou LM (2004) Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in-situ mesocosms. Ecotoxicol Environ Saf 59(3):349–369

    CAS  Google Scholar 

  • Nayar S, Goh BPL, Chou LM (2005) Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology 14(3):397–412

    CAS  Google Scholar 

  • Nejstgaard JC, Frischer ME, Verity PG, Anderson JT, Jacobsen A, Zirbel MJ, Larsen A, Martínez-Martínez J, Sazhin AF, Walters T, Bronk DA (2006) Plankton development and trophic transfer in seawater enclosures with nutrients and Phaeocystis pouchetii added. Mar Ecol Prog Ser 321:99–121

    CAS  Google Scholar 

  • Odum EP (1984) The mesocosm. BioScience 34:558–562

    Google Scholar 

  • Ohwada K, Nishimura M, Wada M, Nomura H, Shibata A, Okamoto K, Toyoda K, Yoshida A, Takada H, Yamada M (2003) Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms. Mar Pollut Bull 47(1–6):78–84

    CAS  Google Scholar 

  • Ouellet JD, Dubé MG, Niyogi S (2013) The influence of food quantity on metal bioaccumulation and reproduction in fathead minnows (Pimephales promelas) during chronic exposures to a metal mine effluent. Ecotoxicol Environ Saf 91:188–197

    CAS  Google Scholar 

  • Oviedo AM, Ziveri P, Gazeau F (2017) Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters. Estuar. Coast. Shelf Sci 186:58–71

    CAS  Google Scholar 

  • Parsons TR (1978) Controlled aquatic ecosystem experiments in ocean ecology research. Mar Pollut Bull 9(8):203–205

    Google Scholar 

  • Riebesell U, Lee K, Nejstgaard JC, (2010) Part 2: experimental design of perturbation experiments. In Guide to best practices for ocean acidifi cation research and data reporting. Publications Office of the European Union

  • Riebesell U, Czerny J, Bröckel KV, Boxhammer T, Büdenbender J, Deckelnick M, Fischer M, Hoffmann D, Krug SA, Lentz U, Ludwig A (2013a) A mobile sea-going mesocosm system–new opportunities for ocean change research. Biogeosciences 10(3):835–1847

    Google Scholar 

  • Riebesell U, Gattuso JP, Thingstad TF, Middelburg JJ (2013b) Preface “Arctic Ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study”. Biogeosciences (BG) 10(8):5619–5626

    Google Scholar 

  • Russell BD, Thompson JA, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15(9):2153–2162

    Google Scholar 

  • Sarma SSS, Corral-Jacquez FI, Nandini S, Brena-Bustamante P (2010) Population level indicators of stress: effects of two heavy metals (copper and mercury) on the growth of Lecane quadridentata (Ehrenberg, 1830) (Rotifera: Lecanidae). J Environ Sci Health, Part A 45(1):32–36

    CAS  Google Scholar 

  • Sassi A, Annabi A, Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36(3):403–409

    CAS  Google Scholar 

  • Six KD, Kloster S, Ilyina T, Archer SD, Zhang K, Maier-Reimer E (2013) Global warming amplified by reduced Sulphur fluxes as a result of ocean acidification. Nat Clim Chang 3(11):975–978

    CAS  Google Scholar 

  • Steele JH (2013) Marine Mesocosms. Ref Module Earth Syst Environ Sci. https://doi.org/10.1016/B978-0-12-409548-9.04207-X

  • Strickland JD, Terhune LDB (1961) The study of in-situ marine photosynthesis using a large plastic bag. Limnol Oceanogr 6(1):93–96

    Google Scholar 

  • Striebel M, Kirchmaier L, Hingsamer P (2013) Different mixing techniques in experimental mesocosms does mixing affect plankton biomass and community composition?.Limnology and Oceanography: Methods 11(4):176–186

  • Taulbee WK, Nietch Christopher T, Brown D, Ramakrishnan B, Tompkins MJ (2009) Ecosystem consequences of contrasting flow regimes in an urban effect stream mesocosm study. J Am Water Resour Assoc 45:907–927

    CAS  Google Scholar 

  • Todorova K, Velcheva I, Yancheva V, Stoyanova S, Dimitrova P, Tomov S, Georgieva E (2019) Interactions of lead with other heavy metals (cadmium, nickel and zinc) in toxic effects on the histological structure of gills of the common carp Cyprinus carpio Linnaeus, 1758. Acta Zool Bulgar 71(1):95–102

    Google Scholar 

  • Troedsson C, Bouquet JM, Lobon CM, Novac A, Nejstgaard JC, Dupont S, Bosak S, Jakobsen HH, Romanova N, Pankoke LM, Isla A (2013) Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study. Mar Biol 160(8):2175–2187

    CAS  Google Scholar 

  • Tsagaraki TM, Pree B, Leiknes Ø, Larsen A, Bratbak G, Øvreås L, Egge JK, Spanek R, Paulsen ML, Olsen Y, Vadstein O (2018) Bacterial community composition responds to changes in copepod abundance and alters ecosystem function in an Arctic mesocosm study. The ISME journal 12(11):2694–2705

    CAS  Google Scholar 

  • Tsiola A, Pitta P, Giannakourou A, Bourdin G, Marro S, Maugendre L, Pedrotti ML, Gazeau F (2017) Ocean acidification and viral replication cycles: frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea. Estuar. Coast. Shelf Sci 186:139–151

    CAS  Google Scholar 

  • Turkoglu M, Önal U, İsmen A (2018) editors. Marine ecology: biotic and abiotic interactions. BoD–books on demand

  • Vajargah FM, Mohamadi Yalsuyi A, Hedayati A, Faggio C (2018) Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc Res Tech 81(7):724–729

    Google Scholar 

  • Villeneuve A, Bouchez A, Montuelle B (2011) In situ interactions between the effects of season, current velocity and pollution on a river biofilm. Freshw Biol 56:2245–2259

    CAS  Google Scholar 

  • Von Bodungen B, Von Bröckel K, Smetacek V, Zeitzschel B (1976) The plankton tower I A structure to study water/sediment interactions in enclosed water columns. Mar Biol 34(4):369–372

    Google Scholar 

  • Wellnitz T, Poff NL (2012) Current-mediated periphyton structure modifies grazer interactions and algal removal. Aquat Ecol 46:521–530

    Google Scholar 

  • Williams ND, Holdway DA (2000) The effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ Toxicol 15(3):165–173

    CAS  Google Scholar 

  • Wirth EF, Pennington PL, Lawton JC, DeLorenzo ME, Bearden D, Shaddrix B, Sivertsen S, Fulton MH (2004) The effects of the contemporary-use insecticide (fipronil) in an estuarine mesocosm. Environ Pollut 131(3):365–371

    CAS  Google Scholar 

  • Witeska M, Jezierska B, Chaber J (1995) The influence of cadmium on common carp embryos and larvae. Aquaculture 129(1–4):129–132

    CAS  Google Scholar 

  • Witeska M, Sarnowski P, Ługowska K, Kowal E (2014) The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol Biochem 40(1):151–163

    CAS  Google Scholar 

  • Wozniak AS, Prem PM, Obeid W, Waggoner DC, Quigg A, Xu C, Santschi PH, Schwehr KA, Hatcher PG (2019) Rapid degradation of oil in mesocosm simulations of marine oil snow events. Environ Sci Technol 53(7):3441–3450

    CAS  Google Scholar 

  • Wright MV, Matson CW, Baker LF, Castellon BT, Watkins PS, King RS (2018) Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms. Sci Total Environ 626:357–365

    CAS  Google Scholar 

  • Zervoudaki S, Krasakopoulou E, Moutsopoulos T, Protopapa M, Marro S, Gazeau F (2017) Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea. Estuar. Coast. Shelf Sci 186:152–162

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Earth Sciences, Government of India for implementing the “Marine Ecotoxicology and Ecological Risk Assessment” (MEERA) Programme at National Centre for Coastal Research (NCCR), Chennai. Authors also thank the Director, National Centre for Coastal Research for constant encouragement and support to carry out the work.

Funding

The present manuscript is NCCR contribution funded by Ministry of Earth Sciences, Government of India [MoES/EFC/28/2018-PC-II dated December 11, 2018].

Author information

Authors and Affiliations

Authors

Contributions

Krishna Venkatarama Sharma: leading the project activities, finalization, reviewing, and editing; Barath Kumar Sarvalingam: collection of literature, data analysis, interpretation, and drafting the manuscript. S.R. Marigoudar: conceptualization, writing-interpretation, reviewing, and visualization.

Corresponding author

Correspondence to Shambanagouda Rudragouda Marigoudar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript does not contain any studies with animals performed by any of the authors.

Consent to participate

This manuscript does not contain any studies with human participants performed by any of the authors.

Consent to publish

This article has the consent of all the authors and authors have no conflicts of interest.

Additional information

Responsible editor: Vedula VSS Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.V., Sarvalingam, B.K. & Marigoudar, S.R. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. Environ Sci Pollut Res 28, 1304–1316 (2021). https://doi.org/10.1007/s11356-020-11121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11121-3

Keywords

Navigation