Skip to main content
Log in

Limno-ecological assessment of lentic ecosystems in the western Mediterranean basin (Turkey) using phytoplankton indices

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Great attention has been given to freshwater ecosystems worldwide due to the increased exploitation of water resources and the degradation of water quality. This study was aimed to demonstrate the phytoplankton-stressor interactions using multivariate approaches and assess the ecological conditions of 28 sampling stations of 12 lentic ecosystems (five lakes and seven reservoirs) in the western Mediterranean basin using phytoplankton indices in dry and rainy seasons 2018. Freshwater and brackish water systems were separately ordinated by canonical correspondence analysis. The brackish ecosystems were under pressures of Ar (arsenic), N-N\( {\mathrm{O}}_2^{-} \) (nitrite), Ca (calcium), EC (electrical conductivity), Cl (chloride), B (boron), etc., whereas shallow freshwater ecosystems were associated with total organic carbon. These factors had significant effects on phytoplankton distribution among lentic ecosystems on the basin. Ecological associations of phytoplankton assemblages varied in the western Mediterranean basin during the study. Pseudanabaena catenata and Palatinus apiculatus, considered tolerant taxa, are associated with higher Ar, EC, and V (vanadium) while Desmodesmus abundans and Microcystis flos-aquae are related to total organic carbon. The modified PTI (phytoplankton trophic index) had the highest correlation coefficient value. Scores of the PTI varied from 2.02 in Çavdır Reservoir to 2.59 in Lake Kocagöl. Results of phytoplankton indices indicated that two (Gölhisar and Yazır) lakes and two (Yapraklı and Çavdır) reservoirs were classified as Good, and three lakes and five reservoirs were classified as Moderate condition. Other predicted classifications (high, poor, and bad) by phytoplankton metrics were not represented. The modified PTI could be a suitable phytoplankton metric for assessing the ecological status of lentic ecosystems in the Mediterranean system according to its highest correlation coefficient value. Overall, the results of this limno-ecological study demonstrated that responses of phytoplankton taxa to explanatory factors provide crucial ecological information about their ecology and to estimate the ecological status of lentic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Annabi-Trabelsi N, El-Shabrawy G, Goher ME et al (2019) Key drivers for copepod assemblages in a eutrophic coastal brackish lake. Water (Switzerland) 11:363. https://doi.org/10.3390/w11020363

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater. In: Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federati, 22nd edn. Water Environment Federation, Secaucus

    Google Scholar 

  • Bailey RG (2010) Ecosystem geography: from ecoregions to sites. Springer Science & Business Media

  • Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sustain Water Resour Manag 2:161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Birk S, Willby NJ, Kelly MG et al (2013) Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Sci Total Environ 454–455:490–499. https://doi.org/10.1016/j.scitotenv.2013.03.037

    Article  CAS  Google Scholar 

  • Borges PAF, Train S, Rodrigues LC (2008) Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607:63–74. https://doi.org/10.1007/s10750-008-9367-3

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369. https://doi.org/10.4319/lo.1977.22.2.0361

    Article  CAS  Google Scholar 

  • Çelekli A (2016) Guide Document of Phytoplankton Indexes. Directorate General for Water Management of the Ministry of Forestry and Water Affairs Republic of Turkey, Ankara

    Google Scholar 

  • Çelekli A, Bilgi F (2019) Bioassessing ecological status of surface waters in the Araban-Yavuzeli catchment (Turkey): application of diatom indices. Turk J Bot 43:597–607. https://doi.org/10.3906/bot-1901-32

    Article  CAS  Google Scholar 

  • Çelekli A, Öztürk B (2014) Determination of ecological status and ecological preferences of phytoplankton using multivariate approach in a Mediterranean reservoir. Hydrobiologia 740:115–135. https://doi.org/10.1007/s10750-014-1948-8

    Article  CAS  Google Scholar 

  • Çelekli A, Albay M, Dügel M (2007) Phytoplankton (except Bacillariophyceae) flora of lake Gölköy (Bolu). Turk J Bot 31:49–65

    Google Scholar 

  • Çelik K, Ongun T (2008) Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9:115–123. https://doi.org/10.1007/s10201-007-0233-1

    Article  Google Scholar 

  • Chellappa NT, Câmara FRA, Rocha O (2009) Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves Reservoir and Pataxó Channel, Rio Grande do Norte, Brazil. Braz J Biol 69(2):241–251

    Article  CAS  Google Scholar 

  • Coelho S, Pérez-Ruzafa A, Gamito S (2015) Phytoplankton community dynamics in an intermittently open hypereutrophic coastal lagoon in southern Portugal. Estuar Coast Shelf S 167:102–112. https://doi.org/10.1016/j.ecss.2015.07.022

    Article  Google Scholar 

  • Dantas EW, Bittencourt-Oliveira M do C, Moura A do N (2012) Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica 42:72–80. https://doi.org/10.1016/j.limno.2011.09.002

  • DGWM–T.R (2018) Ministry of Agriculture and Forestry, General Directorate of Water Management, Flood and Drought Management Department, II edn. The West Mediterranean basin Drought Management Plan, Ankara, p 44

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. https://doi.org/10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Directive (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun: Off J Eur Parliam 22:2000. https://doi.org/10.1039/AP9842100196

    Article  Google Scholar 

  • Dolman AM, Mischke U, Wiedner C (2016) Lake-type-specific seasonal patterns of nutrient limitation in German lakes, with target nitrogen and phosphorus concentrations for good ecological status. Freshw Biol 61:444–456. https://doi.org/10.1111/fwb.12718

    Article  CAS  Google Scholar 

  • European Committee for Standardization (2006) Water quality - guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)

  • European Committee for Standardization (2009) Water Framework Directive intercalibration technical report. Part 2. In: Poikane S (ed) European Commission. Joint Research Centre, Lakes Ispra (Italy)

    Google Scholar 

  • European Committee for Standardization (2015) Water quality - provides guidance on the qualitative andquantitative sampling of phytoplankton from inland waters. European Standard EN, 16698,

  • Glibert P, Burford M (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30:58–69. https://doi.org/10.5670/oceanog.2017.110

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Juggins S, ter Braak CJF (1992) CALIBRATE-a Progr species-environment calibration by [weighted-averaging] Partial least squares regression Environ Chang Res Center. Univ Coll, London

    Google Scholar 

  • Jüttner F (2002) Biogene Geruchs-und Geschmacksstoffe. Nutzung im Kreislauf, Hygiene, Analyse und Bewertung, Wasser, pp 460–474

    Google Scholar 

  • Kaparapu J, Geddada MNR (2013) Seasonal distribution of phytoplankton in Riwada Reservoir, Visakhapatnam, Andhra Pradesh, India. Not Sci Biol 5:290–295. https://doi.org/10.15835/nsb539082

    Article  Google Scholar 

  • Kıvrak E (2011) Karamuk Gölü (Afyonkarahisar) fitoplankton kommunitesinin mevsimsel değişimi ve bazı fiziko-kimyasal özellikleri. Su Ürünleri Derg 28:9–20

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Süβwasserflora von Mitteleuropa, Band 19/1, Cyanoprokaryota, 1. Chroococcales, Teil, p 548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Süßwasserflora von Mitteleuropa, bd. 19/2: Cyanoprokaryota: Oscillatoriales. Spektrum Akademischer Verlag

  • Komarek J, Fott B (1983) Chlorophyceae (Grünalgen) Ordnung: Chlorococcales In: Huber–Pestallozi – Das Phytoplankton des Süßwassers Systematik und Biologie 7 Teil, 1 Hälfte E Schweizerbart`sche Verlagsbuchhandlung, Stuttgart.

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3 Teil: Centrales, Fragilariaceae, Eunotiaceae In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Hrsgb.), Süßwasserflora von Mitteleuropa. Band 2. - Fischer Verlag, Stuttgart.

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4 Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl, H., Gartner, G., Gerloff, J., Heynig, H. & Mollenhauer, D. (Hrsgb.), Süßwasserflora von Mitteleuropa. Band 2. - Fischer Verlag, Stuttgar. Spektrum Academischer Verlag, Heidelberg

  • Krammer K, Lange-Bertalot H (1999a) Bacillariophyceae. 1 Teil: Naviculaceae In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Hrsgb.), Süßwasserflora von Mitteleuropa. Band 2. - Akademischer Verlag Heidelberg, Berlin. Süßwasserflora von Mitteleuropa

  • Krammer K, Lange-Bertalot H (1999b) Bacillariophyceae. 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Hrsgb.), Süßwasser–flora von Mitteleuropa. Band 2. - Akademischer Verlag Heidelberg, Berlin.

  • Kruk C, Devercelli M, Huszar VLM et al (2017) Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshw Biol 62:1681–1692. https://doi.org/10.1111/fwb.12968

    Article  CAS  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press

  • Linares MS, Callisto M, Marques JC (2020) Assessing biological diversity and thermodynamic indicators in the dam decommissioning process. Ecol Indic. https://doi.org/10.1016/j.ecolind.2019.105832

  • Liu C, Liu L, Shen H (2010) Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Lake Baiyangdian, China. Procedia Environ Sci 2:1622–1631. https://doi.org/10.1016/j.proenv.2010.10.173

    Article  Google Scholar 

  • Magalhães AA de J, da Luz LD, de Aguiar Junior TR (2019) Environmental factors driving the dominance of the harmful bloom‐forming cyanobacteria Microcystis and Aphanocapsa in a tropical water supply reservoir. Water Environ Res 91:1466–1478. https://doi.org/10.1002/wer.1141

  • Marchetto A, Padedda BM, Mariani MA et al (2009) A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. J Limnol 68:106–121. https://doi.org/10.4081/jlimnol.2009.106

    Article  Google Scholar 

  • Marshall H (2014) Phytoplankton in Virginia lakes and reservoirs: part II. Va J Sci 65:3–8. https://doi.org/10.25778/fq7v-mt85

    Article  Google Scholar 

  • Müller R, Stadelmann P (2004) Fish habitat requirements as the basis for rehabilitation of eutrophic lakes by oxygenation. Fish Manag Ecol 11:251–260. https://doi.org/10.1111/j.1365-2400.2004.00393.x

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2002) Limnology of a small, temporary water body: the Pond of Santa Rosalia (Sicily, Italy). SIL Proc 1922-2010 28:1673–1677. https://doi.org/10.1080/03680770.2001.11901906

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2003) Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502:133–143. https://doi.org/10.1023/B:HYDR.0000004276.11436.40

    Article  Google Scholar 

  • Niesel V, Hoehn E, Sudbrack R et al (2007) The occurrence of the Dinophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. J Plankton Res 29:347–357. https://doi.org/10.1093/plankt/fbm017

    Article  Google Scholar 

  • Obuekwe IS, Vaz MGMV, Genuário DB et al (2019) Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. Algal Res 42:101589. https://doi.org/10.1016/j.algal.2019.101589

    Article  Google Scholar 

  • Olrik K (1992) Ecology of Peridinium willei and P. volzii (Dinophyceae) in Danish lakes. Nord J Bot 12:557–568. https://doi.org/10.1111/j.1756-1051.1992.tb01834.x

    Article  Google Scholar 

  • Ongun Sevindik T, Tunca H, Gönülol A et al (2017) Phytoplankton dynamics and structure, and ecological status estimation by the q assemblage index: a comparative analysis in two shallow mediterranean lakes. Turk J Bot 41:25–36. https://doi.org/10.3906/bot-1510-22

    Article  CAS  Google Scholar 

  • Ongun T, Çelik K, Gönülol A (2010) Twenty-four new records for the freshwater algae of Turkey. Turk J Bot 34:249–259. https://doi.org/10.3906/bot-0906-56

    Article  Google Scholar 

  • Padedda BM, Sechi N, Lai GG et al (2017) Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Glob Ecol Conserv 12:21–35. https://doi.org/10.1016/j.gecco.2017.08.004

    Article  Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553:1–14. https://doi.org/10.1007/s10750-005-1393-9

    Article  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19. https://doi.org/10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Pasztaleniec A, Poniewozik M (2010) Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive - a comparison of approaches. Limnologica 40:251–259. https://doi.org/10.1016/j.limno.2009.07.001

    Article  CAS  Google Scholar 

  • Phillips G, Lyche-Solheim A, Skjelbred B et al (2013) A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704:75–95. https://doi.org/10.1007/s10750-012-1390-8

    Article  Google Scholar 

  • Poikane S, Birk S, Böhmer J et al (2015) A hitchhiker’s guide to European lake ecological assessment and intercalibration. Ecol Indic 52:533–544. https://doi.org/10.1016/j.ecolind.2015.01.005

    Article  Google Scholar 

  • Popovsky J, Pfiester LA (1990). Dinophyceae (Dinoflagellida) In: Süßwasserflora von Mitteleuropa. Band 6. - Gustav Fischer Verlag Jena. G. Fischer

  • Ptacnik R, Solimini AG, Brettum P (2009) Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633:75–82. https://doi.org/10.1007/s10750-009-9870-1

    Article  CAS  Google Scholar 

  • Pulina S, Suikkanen S, Padedda BM et al (2020) Responses of a Mediterranean coastal lagoon plankton community to experimental warming. Mar Biol 167:22. https://doi.org/10.1007/s00227-019-3640-z

    Article  CAS  Google Scholar 

  • Rangel LM, Silva LHS, Arcifa MS, Perticarrari A (2009) Fatores direcionadores da distribuição nictemeral de grupos funcionais fitoplanctônicos de um lago brasileiro raso e tropical. Braz J Biol 69:75–85. https://doi.org/10.1590/S1519-69842009000100009

    Article  CAS  Google Scholar 

  • Ratnayake AS, Ratnayake NP, Sampei Y et al (2018) Seasonal and tidal influence for water quality changes in coastal Bolgoda Lake system, Sri Lanka. J Coast Conserv 22:1191–1199. https://doi.org/10.1007/s11852-018-0628-7

    Article  Google Scholar 

  • Reynolds CS (1997) Kingdoms and communities in Western Europe, 900-1300. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (2006) The ecology of Phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C et al (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417

    Article  Google Scholar 

  • Rojo C, Ortega-Mayagoitia E, Rodrigo MA, Álvarez-Cobelas M (2000) Phytoplankton structure and dynamics in a semiarid wetland, the National Park “Las Tablas de Daimiel” (Spain). Arch Hydrobiol 148:397–419. https://doi.org/10.1127/archiv-hydrobiol/148/2000/397

    Article  CAS  Google Scholar 

  • Salmaso N, Naselli-Flores L, Padisák J (2015) Functional classifications and their application in phytoplankton ecology. Freshw Biol 60:603–619. https://doi.org/10.1111/fwb.12520

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207. https://doi.org/10.1016/j.tree.2008.11.009

    Article  Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346. https://doi.org/10.1093/plankt/fbg096

    Article  Google Scholar 

  • ter Braak J, Šmilauer P (2002) Canoco reference manual and CanoDraw for Windows user´s guide. www.canoco.com

  • Toudjani AA, Çelekli A, Gümüş EY et al (2018) Assessment of ecological status using phytoplankton indices and multivariate analyses in the western Mediterranean Basin. Fundam Appl Limnol 191:155–167. https://doi.org/10.1127/fal/2018/1092

    Article  Google Scholar 

  • Varol M (2019) Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables. Environ Sci Pollut Res 26:20439–20453. https://doi.org/10.1007/s11356-019-05354-0

    Article  CAS  Google Scholar 

  • Vollenweider RA, Kerekes J (1982) Eutrophication of waters. Monitoring, assessment and control. Organization for Economic Co-Operation and Development (OECD), Paris, 156.

  • Wehr JD, Sheath RG (2003) Freshwater Algae of North America. Ecology and Classification.

  • Yatigammana SK, Ileperuma OA, Perera MBU (2011) Water pollution due to a harmful algal bloom: a preliminary study from two drinking water reservoirs in Kandy, Sri Lanka. J Natl Sci Found Sri Lanka 39:91–94. https://doi.org/10.4038/jnsfsr.v39i1.2930

    Article  CAS  Google Scholar 

  • Yu J, Zhang Y, Zhong J, et al (2019) Water-level alterations modified nitrogen cycling across sediment-water interface in the three Gorges Reservoir. Environ Sci Pollut Res 1–13. https://doi.org/10.1007/s11356-019-06656-z

Download references

Funding

This study was supported by T.R. Ministry of Agriculture and Forestry, General Directorate of Water Management, and the Scientific Research Projects Executive Council of Gaziantep University. We thank Dr. Mehmet Yavuzatmaca (Bolu Abant İzzet Baysal University) for his help.

Author information

Authors and Affiliations

Authors

Contributions

AÇ applied the sampling methodology; collected the samples; analyzed the physicochemical variables; identified the phytoplankton species; applied the statistical analyses; and written, reviewed, and edited the article. HL collected the samples, analyzed the physicochemical variables, identified the phytoplankton species, and drawn the map of the studied region. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Abuzer Çelekli.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Thomas Hein

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelekli, A., Lekesiz, Ö. Limno-ecological assessment of lentic ecosystems in the western Mediterranean basin (Turkey) using phytoplankton indices. Environ Sci Pollut Res 28, 3719–3736 (2021). https://doi.org/10.1007/s11356-020-10697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10697-0

Keywords

Navigation