Skip to main content

Advertisement

Log in

Compression behaviors of mechanically biologically treated wastes of Tianziling landfill in Hangzhou, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the compression behaviors of mechanically biologically treated (MBT) wastes. For this purpose, the short-term compression-rebound and long-term compression tests were conducted on MBT wastes collected from Hangzhou Tianziling landfill in China. The results showed that the duration of immediate compression was obtained as 15.17–36.67 h and was comparable to municipal solid waste (MSW). The immediate compression ratio was 0.233–0.247, and it was comparable to the aged high food waste content (HFWC)-MSW, fresh and aged low food waste content (LFWC)-MSW, but much lower than the fresh HFWC-MSW. The mechanical creep ratio (C′αc) was 0.012–0.018, being close to the fresh and aged MSWs. The bio-induced compression ratio (C′αb) was 0.143–0.174. The compression ratio rose exponentially with temperature (5–42 °C) in both mechanical creep stage and bio-induced compression stage, and it increased much faster in the bio-induced compression stage. The resilient strains was only 2.1–3.3% of the compression strain at the same stress interval, suggesting that the compression strain consisted of mostly plastic deformation and negligible elastic deformation. The above findings can provide a reference for settlement prediction and storage capacity estimation of an MBT waste landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adamović VM, Antanasijević DZ, Ristić MĐ, Perić-Grujić AA, Pocajt VV (2016) Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis. Environ Sci Pollut Res 24(1):299–311

    Google Scholar 

  • Babu SGL, Lakshmikanthan P (2015) Constitutive model for municipal solid waste settlement. Waste Manage Res 33(1):30–38

    Google Scholar 

  • Bareither CA (2010) Compression behavior of solid waste. Univ. of Wisconsin, Madison

    Google Scholar 

  • Bareither CA, Benson CH, Edil TB (2012a) Compression behavior of municipal solid waste: immediate compression. J Geotech Geoenviron Eng 138:1048–1062

    Google Scholar 

  • Bareither CA, Breitmeyer RJ, Benson CH, Barlaz MA, Edil TB (2012b) Deer track bioreactor experiment, filed-scale evaluation of municipal solid waste bioreactor performance. J Geotech Geoenviron Eng 138:658–670

    CAS  Google Scholar 

  • Bareither CA, Benson CH, Edil TB, Barlaz MA (2012c) Abiotic and biotic compression of municipal solid waste. J Geotech Geoenviron Eng 138(8):877–888

    CAS  Google Scholar 

  • Bareither CA, Benson CH, Edil TB (2013) Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J Geotech Geoenviron Eng 139(7):1007–1021

    CAS  Google Scholar 

  • Bauer J, Münnich K, Fricke K (2006) Investigation of mechanical properties of MBT waste. Proceedings of the 4th Asian-Pacific Landfill Symposium (APLAS), Shanghai, pp 745–760

    Google Scholar 

  • Bayard R, Morais JDA, Ducom G (2010) Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J Hazard Mater 175(1–3):23–32

    CAS  Google Scholar 

  • Beaven RP, Power W (1995) Determination of hydrogeological and geotechnical properties of refuse using a large compression cell. In, Proceedings of the Sardinia 95, 5th International Landfill Symposium. Cagliari

  • Benson CH, Barlaz MA, Lane DT, Rawe JM (2007) Practice review of five bioreactor/recirculation landfills. Waste Manag 27(1):13–29

    CAS  Google Scholar 

  • Bhandari AR, Powrie W (2013) Behavior of an MBT waste in monotonic triaxial shear tests. Waste Manag 33(4):881–891

    Google Scholar 

  • Bjarngard A, Edgers L (1990) Settlement of municipal solid waste landfills. The Annul Madison Waste Conference

  • Boni MR, Chiavola A, Sbaffoni S (2016) Pretreated waste landfilling, Relation between leachate characteristics and mechanical behaviour. Waste Manage 26(10):1156–1165

  • Chen QH (2009) Simulation study of leachate recirculation semiaerobic landfills. M.S. dissertation, Dept. of Environmental Science, Southwest Jiaotong Univ., Chendu, China

  • Chen JD, Shi JY, Hu YD (2008) One-dimensional compression modified method of settlement of landfills and verification of degradation of organic content in solid waste. Rock Soil Mech 29(7):1797–1801

    Google Scholar 

  • Chen YM, Zhan LT, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86–95

    Google Scholar 

  • Chen YM, Ke H, Fredlund DG, Zhan LT, Xie Y (2010a) Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J Geotech Geoenviron Eng 136(5):706–717

    CAS  Google Scholar 

  • Chen QH, Yang QY, Huang YF, Lin N (2010b) Study on settlement characteristics of simulating semi-aerobic landfill with leachate recirculation. J Safety Environ 10(2):53–56

    CAS  Google Scholar 

  • Chen X, Huang G, Zhao S, Cheng G, Wu Y, Zhu H (2017) Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach. Environ Sci Pollut Res 24(31):24243–24260

    Google Scholar 

  • De Abreu RC (2003) Facultative bioreactor landfill, an environmental and geotechnical study. Ph.D. dissertation, Dept. of Engineering and Applied Sciences, Univ. of New Orleans, New Orleans, LA

  • De Abreu RC, McManis KL, Boutwell GP (2005) A new model for immediate settlement predictions in landfills. In Proceedings of the 16th International Conference of Soil Mechanics and Geotechnical Engineering. Millpress Science Publishers, Rotterdam, Netherlands 16(4):2233–2236

  • Di Maria F, Micale C (2015) Life cycle analysis of management options for organic waste collected in an urban area. Environ Sci Pollut Res 22(1):248–263

    Google Scholar 

  • Donovan SM, Bateson T, Gronow JR, Voulvoulis N (2010) Characterization of compost-like outputs from mechanical biological treatment of municipal solid waste. J Air Waste Manage Assoc 60(6):694–701

    Google Scholar 

  • Elagroudy SA, Abdel-Razik MH, Warith MA, Ghobrial FH (2008) Waste settlement in bioreactor landfill models. Waste Manag 8:2366–2374

    Google Scholar 

  • Fang YF (2005) Organic substance degradation and deformation of municipal solid waste. M.S. dissertation, Dept. of Geotechnical Engineering, Hohai Univ., Nanjing, China

  • Fei X, Zekkos D (2013) Factors influencing long-term settlement of municipal solid waste in laboratory bioreactor landfill simulators. J Hazard Toxic Radioact Waste 17(4):259–271

    CAS  Google Scholar 

  • Fei F, Wen ZG, Huang SB (2013) Mechanical biological treatment of municipal solid waste, energy efficiency, environmental impact and economic feasibility analysis. J Clean Prod 178:731–739

    Google Scholar 

  • Feng JH, Zhu NW, Lin KM, Lou ZY (2009) Study on inhibitory effects toward leachate at the initial stage of loading barrier landfill method for domestic waste. Chin J Environ Eng 3(5):849–853

    CAS  Google Scholar 

  • Gabr MA, Valero SN (1995) Geotechnical properties of municipal solid waste. J Geotech Test 18:241–251

    Google Scholar 

  • Fox PJ, Edil TB (1996) Effects of stress and temperature on secondary compression of peat. Can Geotech J 33(3): 405–415

  • Gao W, Bian X, Xu W, Chen Y (2017) An equivalent-time-lines model for municipal solid waste based on its compression characteristics. Waste Manag 68:292–306

    Google Scholar 

  • Gourc JP, Staub MJ, Conte M (2010) Decoupling MSW settlement into mechanical and biochemical processes–modelling and validation on large-scale setups. Waste Manag 30(8–9):1556–1568

    CAS  Google Scholar 

  • Gunawardana EGW, Basnayake BFA, Shimada S (2009) Influence of biological pre-treatment of municipal solid waste on landfill behaviour in Sri Lanka. Waste Manage Res 27(5):456–462

    CAS  Google Scholar 

  • Hossain MS, Ma G, Barlaz MA (2003) Relationship of compressibility parameters to municipal solid waste decomposition. J Geotechnical Geo Environ Eng 129(12):1151–1158

    Google Scholar 

  • Hossain MS, Gabr MA, Asce F (2009) The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste. Waste Manag 29(9):2417–2424

    CAS  Google Scholar 

  • Ivanova LK, Richards DJ, Smallman DJ (2008) The long-term settlement of landfill waste. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management 161(3):121–133

  • Jiang JJ, Yang GD, Zhou D, Huang YF, Huang ZL, Feng XM, Zhou SY, Zhang CP (2007) Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Manag 27(7):893–901

    CAS  Google Scholar 

  • Jin H (2005) Decomposition of high organic and moisture content municipal solid waste in bioreactor landfills. M.S. dissertation, Dept. of Civil Engineering, Ryerson Univ. Toronto, Canada

  • Ke H, Liu JL, Chen YM, Zhan LT, Xu XB (2010) Biodegradation-compression tests on municipal solid waste subjected to different vertical pressures. J Geotech Eng 32:1610–1615

    Google Scholar 

  • Kim H (2005) Comparative studies of aerobic and anaerobic landfills using simulated landfill lysimeters. Ph.D. dissertation, Univ. of Florida, Gainesville, FL

  • Kim H, Jang YC, Townsend T (2011) The behavior and longterm fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J Hazard Mater 194:369–377

    CAS  Google Scholar 

  • Kuehle-Weidemeier M (2004) Landfilling of mechanically-biologically pretreated municipal solid waste. International Symposium Waste Management, Zagreb, VIII

  • Lakshmikanthan P, Babu SGL (2017) Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste. Waste Manage Res 35(3):285–293

    CAS  Google Scholar 

  • Landva VO, Valsangkar AJ, Pelkey SG (2000) Lateral earth pressure at rest and compressibility of municipal solid waste. Can Geotech J 37:1157–1165

    Google Scholar 

  • Liao ZQ, Shi JY, Mao J (2007) Experimental study and mechanism analysis of primary compression index of MSW. J Hohai Univ 35:326–329

    Google Scholar 

  • Liu JL, Ke H, Zhan LT, Chen YM (2010) Simulation tests of biodegradation and compression of municipal solid waste. In Advances in environmental geotechnics. Springer, Berlin Heidelberg, Germany pp:521–524

  • Liu XD, Shi JY, Gao H (2011) Effect of degradation on compression resilience of waste soil. J Shenzhen Univ (Sci Technol Ed) 6:535–540

    Google Scholar 

  • Liu XD, Shi JY, Qian XD, Liao ZQ (2013) Biodegradation behavior of municipal solid waste with liquid aspects, experiment and verification. J Environ Chem Eng 139(12):1488–1496

    CAS  Google Scholar 

  • Lonardo DMC, Lombardi F, Gavasci R (2015) Quality evaluation and improvement of mechanically–biologically treated municipal solid waste in view of a possible recovery. Int J Environ Sci Technol 10(12):3243–3254

    Google Scholar 

  • Machado CH, Carvalho MF, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron Eng 128(11):940–951

    Google Scholar 

  • Mahar RB, Liu J, Li H, Nie YF (2009) Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation 20(3):319–330

    CAS  Google Scholar 

  • Mahler CF, Fricke K, Münnich K (2006) Pilot project of mechanical-biological treatment of waste in Brazil. Waste Manag 26(2):150–157

    Google Scholar 

  • Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotechnical Geo Environ Eng 129(4):372–378

    Google Scholar 

  • McDougall JR, Pyrah IC, Yuen STS, Monterio VED, Melo MC, Juca JFT (2004) Decomposition and settlement in landfilled waste and other soil-like materials. Geotechnique 54(9):605–609

    Google Scholar 

  • Moghaddam DD, Haghizadeh A, Tahmasebipour N, Zeinivand H (2020) Introducing the coupled stepwise areal constraining and Mahalanobis distance: a promising MCDM-based probabilistic model for landfill site selection. Environ Sci Pollut Res 27:24954–24966. https://doi.org/10.1007/s11356-020-08746-9

    Article  Google Scholar 

  • Olivier F, Gourc JP (2007) Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell. Waste Manag 27(1):44–58

    Google Scholar 

  • Olivier F, Gourc JP, Lopez S, Benhamida S, Van WD (2003) Mechanical behavior of solid waste in a fully instrumented prototype compression box. Proceedings of the 9th International Waste Management and Landfill Symposium, Cagliari. pp:1–12

  • Pantini S, Verginelli I, Lombardi F (2015) Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests. Waste Manag 38(1):22–32

    CAS  Google Scholar 

  • Park HI, Lee SR (2002) Long-term settlement behaviour of MSW landfills with various fill ages. Waste Manage Res 20(3):259–268

    CAS  Google Scholar 

  • Peng GX (2004) Municipal solid waste settlement and deformation. Ph.D. dissertation, Dept. of Geotechinical Engineering, Hohai Univ., Nanjing, China

  • Petrović I, Bauer E (2011) A simple hypoplastic model for simulating the mechanical behaviour of MBT waste. Computational Geomechanics, COMGEO II-In Proceedings of the 2nd International Symposium on Computational Geomechanics pp:337–346

  • Pimolthai P, Wagner JF (2014) Soil mechanical properties of MBT waste from Luxembourg, Germany and Thailand. Songklanakarin J Sci Technol 36(6):701–709

    Google Scholar 

  • Qiu Z, Li M, Zhang L, Zhang R, Li M (2020) Effect of waste compaction density on stabilization of aerobic bioreactor landfills. Environ Sci Pollut Res 27(4):4528–4535

    CAS  Google Scholar 

  • Rao SK, Moulton LK, Seals RK (1977) Settlement of refuse landfills. Proceedings of the Conference on Geotechnical Practice for Disposal of Solid Waste Materials. Ann Arbor, New York. 574–598

  • Reddy KR, Gangathulasi J, Parakalla NS, Bogner JE (2009a) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952–959

    Google Scholar 

  • Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner J (2009b) Geotechnical properties of synthetic municipal solid waste. Int J Geotech Eng 3(3):429–438

    CAS  Google Scholar 

  • Reddy KR, Gangathulasi J, Parakalla NS, Hettiarachchi H, Bogner JE, Lagier T (2009c) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manage Res 27:578–587

    CAS  Google Scholar 

  • Sadek S, El-Fadel M, Khoury R, Ayoub G (2000) Settlement in seawater-saturated waste fills. Environ Eng Sci 17(2):81–95

    CAS  Google Scholar 

  • Sharma HD, De A (2007) Municipal solid waste landfill settlement, postclosure perspectives. J Geotech Geoenviron Eng 133(6):619–629

    Google Scholar 

  • Sheridan S (2003) Modeling solid waste settlement as a function of mass loss. M.S. dissertation, Univ, of Florida, Gainesville, FL

  • Shi JY, Lei G, Ai Y et al (2006) Settlement calculation method and experimental study of wastes by considering decomposition of organic matter. Rock Soil Mech 27(10):1673–1677

    Google Scholar 

  • Siddiqui AA (2014) Pretreated municipal solid waste behavior in laboratory scale landfill. Int J Sust Dev World 9(2):263–276

    Google Scholar 

  • Siddiqui AA, Richards DJ, Powrie W (2012) Investigations into the landfill behaviour of pretreated wastes. Waste Manag 32(7):1420–1426

    CAS  Google Scholar 

  • Siddiqui AA, Powrie W, Richards DJ (2013a) Impact of pretreatment on the landfill behaviour of MBT waste. Sustain Develop Plan 173:627–638

    CAS  Google Scholar 

  • Siddiqui AA, Powrie W, Richards DJ (2013b) Settlement characteristics of mechanically biologically treated wastes. J Geotech Geoenviron Eng 139(10):1676–1689

    Google Scholar 

  • Sormunen K, Einola J, Ettala M, Rintala J (2008) Leachate and gaseous emissions from initial phases of landfilling mechanically and mechanically-biologically treated municipal solid waste residuals. Bioresour Technol 99(7):2399–2409

    CAS  Google Scholar 

  • Stessel RI, Murphy RJ (1992) A lysimeter study of the aerobic landfill concept. Waste Manag Res 10(6):485–503

    CAS  Google Scholar 

  • Stoltz G, Gourc JP (2007) Influence of compressibility of domestic waste on fluid permeability. Proceedings of the 11th International Waste Management and Landfill Symposium, Cagliari, pp:1–8

  • Stoltz G, Gourc JP, Oxarango L (2010) Characterisation of the physico-mechanical parameters of MSW. Waste Manag 30(8–9):1439–1449

    Google Scholar 

  • Sun HJ, Liang L, Zhao LH, Wang XZ (2009) Experimental analysis of primary compression settlement of municipal solid waste landfill. Ind Const 39:84–107

    Google Scholar 

  • Sun YJ, Sun XJ, Zhao YC (2011) Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor. Waste Manag 31(6):1202–1209

    CAS  Google Scholar 

  • Swati M, Joseph K (2008) Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills. Waste Manag 28(8):1355–1363

    CAS  Google Scholar 

  • Tang P, Zhao YC, Liu D (2008) A laboratory study on stabilization criteria of semi-aerobic landfill. Waste Manage Res 26(6):566–572

    CAS  Google Scholar 

  • Vardopoulos I, Konstantopoulos I, Zorpas AA, Limousy L, Bennici S, Inglezakis VJ, Voukkali I (2020) Sustainable metropolitan areas perspectives through assessment of the existing waste management strategies. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07930-1

  • Vilar OM, Carvalhod MF (2004) Mechanical properties of municipal solid waste. J Test Eval 32(6):438–449

    Google Scholar 

  • Wall DK, Zeiss C (1995) Municipal landfill biodegradation and settlement. J Environ Eng 121(3):214–224

    CAS  Google Scholar 

  • Wang JL (2007) Characteristic study on municipal solid waste bioreactor landfill. M.S. dissertation, Dept. of Environmental Engineering, Chinese Agriculture Univ., Beijing, China

  • Xie Q, Zhang YX, Zhang JH (2003) Experimental study on the compressibility of stale waste. J Chongqing Jianzhu Univ 25:18–25

    Google Scholar 

  • Xu XB, Zhan LT, Chen YM, Wei HY, Lin WA (2011) Field monitoring and analysis of municipal solid waste landfill settlement. Rock Soil Mech 32(12):3721–3727

    CAS  Google Scholar 

  • Xu H, Zhan LT, Li H, Lan JW, Chen YM, Zhou HY (2016) Time- and stress-dependent model for predicting moisture retention capacity of high-food-waste-content municipal solid waste, based on experimental evidence. J Zhejiang Univ Sci-A 17(7):525–540

    CAS  Google Scholar 

  • Xu H, Miao JD, Chen P, Zhan LT, Wang YZ (2019a) Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China. Eng Geol 255:59–68

    Google Scholar 

  • Xu H, Qiu HL, Zhu G, Zhan LT, Zhang ZY, Xu XB, Chen YM, Wang YZ (2019b) Comparison of settlement behaviors of high-food-waste-content (HFWC) and low-food-waste-content (LFWC) MSWs and assessment of their pre diction models. Sci China Technol Sci 62:1–22

    Google Scholar 

  • Xu H, Zhu G, Zhang ZY, Zhan LT, Chen YM (2019c) Experimental study on the primary compression behavior and modeling the modified primary compression index of municipal solid waste. Chin J Rock Mech Eng 38(6):1270–1283

    Google Scholar 

  • Xu H, Wang JN, Zhan LT, Zhang ZY, Xu XB, Chen YM, Yao K (2020) Characterization of compression behaviors of high food waste content (HFWC) MSW and no food waste content (NFWC) MSW in China. Waste Manag 103:305–313

    Google Scholar 

  • Zekkos D, Fei X, Grizi A (2017) Response of municipal solid waste to mechanical compression. J Geotech Geoenviron Eng 143(3):04016101

    Google Scholar 

  • Zhan LT, Chen YM, Ling WA (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Eng Geol 97:97–111

    Google Scholar 

  • Zhan LT, Xu H, Chen YM, Lu F, Lan JW, Shao LM, Lin WA, He PJ (2017a) Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: preliminary findings from a large-scale experiment. Waste Manag 63:27–40

    CAS  Google Scholar 

  • Zhan LT, Xu H, Chen YM, Lan JW, Lin WA, Xu XB, He PJ (2017b) Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: liquid-gas interactions observed from a large-scale experiment. Waste Manag 68:307–318

    CAS  Google Scholar 

  • Zhan LT, Xu H, Jiang XM, Lan JW, Chen YM, Zhang ZY (2019) Use of electrical resistivity tomography for detecting the distribution of leachate and gas in a large-scale MSW landfill cell. Environ Sci Pollut Res 26(20):20325–20343

    Google Scholar 

  • Zhao YR, Xie Q, Zhang YX, Huang D, Wang L (2013) Experimental analysis on the decomposition-creep settlement properties of municipal solid waste. J Vivi Archit Environ Eng 35(6):7–15

Download references

Acknowledgments

Thanks are given for the help of the Hangzhou Environmental Group.

Funding

This research was funded by the National Natural Science Foundation of China (Contract Nos. 51678532, 51708508 and 51978625) and supported by the Fundamental Research Funds of Zhejiang Sci-Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Additional information

Responsible editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fang, Y., Wang, Y. et al. Compression behaviors of mechanically biologically treated wastes of Tianziling landfill in Hangzhou, China. Environ Sci Pollut Res 27, 43970–43986 (2020). https://doi.org/10.1007/s11356-020-10253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10253-w

Keywords

Navigation