Skip to main content
Log in

Distribution and origin of potentially toxic elements in a multi-aquifer system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pollution of the potentially toxic elements (PTEs) is a major concern in the metal ore-mining environment. Active polymetallic industries and mines cause great continuous devastation of both terrestrial and aquatic environments on a local and regional scale. This study investigated the pollution of surface water and groundwater in the area containing six large-scale iron ore mines, which have been in operation for more than a few decades. In order to assess the PTEs pollution, the spatial and temporal distributions of 13 different PTEs (Al, As, Co, Li, Mn, Mo, Ni, Pb, Rb, Se, Si, Sr, and Zn) were measured in 42 water samples collected from the multi-aquifer system including three distinct aquifers (upper alluvial aquifer (UAA), lower alluvial aquifer (LAA), and hard-rock aquifer (HRA)) of the Gohar-Zamin mining area in Iran. The highest concentrations of total dissolved solids (TDS = 164,000 mg/l) and PTEs were measured in HRA. Three trends were identified between the PTE concentration and increasing of TDS based on Spearman correlation analysis: (1) an increasing trend for Al, Co, Li, Mn, Rb, Se, Sr, and Ni; there were strong positive correlations in HRA between TDS and Mn (0.83), Al (0.65), Co (0.74), Li (0.90), Ni (0.83), Rb (0.91), Se (0.82), and Sr (0.84), suggesting a common origin for these elements; (2) no obvious trend for As and Mo, no correlation was founded between As and Mo with other PTEs and TDS, indicating a natural geogenic origin and mutual dependencies of these elements; and (3) a decreasing trend for Si, Zn, and Pb; TDS had a significantly negative correlation with the PTEs and attributing to different chemical properties of infiltrated groundwater. In the principal component analysis (PCA), the first PC that covers 85.09% of the total observed variance is mainly attributed the groundwater salinization. This component is composed of Al, Co, Li, Mn, Rb, Se, Sr, and Ni. The second PC contains elements As and Mo. This PC explain 14.4% of total variance and may be referred to natural origin of PTEs. Si, Zn, and Pb are in the third principal component and cover 9.64% of the variance of the data. Third PC have been attributed to lithogenic and/or primary water chemistry factors. The PTE pollution were evaluated based on heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and degree of contamination (Cd). The results indicated that all of the groundwater samples collected from HRA had HEI, HPI, and Cd values greater than 21, 264, and 14 (highly pollution limits of indices), respectively, and were classified as highly polluted groundwater. HPI values within the UAA, LAA, and salt playa (SP) were lower than the critical level of 100, suggesting a threshold for the drinking water pollution. Moreover, HEI and Cd with values of less than 10 and 7 suggested low-level pollution in UAA, LAA, and SP. However, the contaminated level of PTEs exceeded the WHO standard for drinking water in HRA only. Since groundwater in HRA is a brine with the high values of PTEs, pumping of this water out to the surrounding natural environment may cause harmful impacts on the environment and perhaps living species in Bahram-e-Goor protected area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

We also thank Dr. Amin Assari, head of Groundwater Research (R & D Division of the Gohar-Zamin Iron Ore Co.), for his assistance in field works and samplings. The authors would like to thank three anonymous reviewers for their constructive comments and suggestions.

Funding

Funding was provided by the Gohar-Zamin Iron Mine Company and Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zargham Mohammadi.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaat, M.J., Mohammadi, Z. & Rezanezhad, F. Distribution and origin of potentially toxic elements in a multi-aquifer system. Environ Sci Pollut Res 27, 43724–43742 (2020). https://doi.org/10.1007/s11356-020-10223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10223-2

Keywords

Navigation