Skip to main content

Advertisement

Log in

Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants

  • Recent Developments and Innovative Strategies in Environmental Sciences in Europe
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The amount of plastics from waste electric and electronic equipment (WEEE) has enormously increased nowadays, due to the rapid expansion and consumption of electronic devices and their short lifespan. This, in combination with their non-biodegradability, led to the need to explore environmentally friendly solutions for their safe disposal. One main obstacle when recycling plastics from WEEE is that they usually comprise harmful additives such as brominated flame retardants (BFRs) that need to be removed before or during their recycling. This paper reviews existing techniques for the recycling of plastics from WEEE and focuses specifically on the advantages, disadvantages, and challenges of pyrolysis as an environmentally friendly method for the production of value-added materials (monomers, hydrocarbons, phenols, etc.). Current technological trends available for the recycling of plastics containing brominated flame retardants are reviewed in an attempt to provide insights for future research on the sustainable management of plastics from WEEE. Emphasis is given on conventional pyrolysis, where a pretreatment step for the debromination of products is applied. This is required since brominated compounds treated at high temperatures may result in the production of harmful to health compounds such as dioxins. All current pretreatment methods (solvent extraction, supercritical fluid technology, etc.) are presented and compared in detail. Co-pyrolysis is also investigated, as it seems to be a very interesting approach, since no catalysts or solvents are used, and at the same time, more plastic wastes can be consumed as feedstock. Furthermore, catalytic pyrolysis along with key parameters, such as the type of the catalyst or pyrolysis temperature, are fully analyzed. Catalysts affect the products’ distribution and enhance the removal of bromine from pyrolysis oils. Finally, an emerging technique, that of microwave-assisted pyrolysis, is also highlighted, as it offers many advantages over conventional pyrolysis. Of course, there are some impediments, such as the operational costs or other difficulties as regards the industrial implementation of the mentioned techniques that need to be overcome through future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Funding

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitriοs S. Achilias.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charitopoulou, M.A., Kalogiannis, K.G., Lappas, A.A. et al. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ Sci Pollut Res 28, 59190–59213 (2021). https://doi.org/10.1007/s11356-020-09932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09932-5

Keywords

Navigation