Skip to main content
Log in

Quantitative PCR assay for the simultaneous identification and enumeration of multiple Karenia species

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quantitative PCR (qPCR) is the method of choice for specific detection and quantification of harmful algal bloom (HAB) species. Development of qPCR assay for simultaneous enumeration of species that frequently co-exist in HABs is required. A high sensitivity TaqMan qPCR assay, using probe and primers, located at ITS1–5.8S–ITS2 rDNA region, detecting, specifically, Karenia selliformis, K. bidigitata, and K. mikimotoi, was designed. ITS1–5.8S–ITS2 rDNA region copy numbers per Karenia cell genome were estimated to 217.697 ± 67.904, allowing cell quantification. An application of the designed methodology in field samples has been conducted, and it showed high sensitivity (detection of around 10−1 cell/100 mg of bivalve mollusk tissue, equivalent to about 20 copies of the target sequence). We suggest that the optimized method could contribute to early detection of three closely related Karenia species in seafood cultivating areas to promote control quality, guarantee a fast and effective intervention, and improve public health prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelkafi S, Chamkha M, Casalot L, Sayadi S, LabaT M (2005) Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252(1):79–84

    CAS  Google Scholar 

  • Adachi M, Sako Y, Ishida Y (1997) Analysis of Gymnodinium catenatum Dinophyceae using sequences of the 5.8S rDNA-ITS regions and random amplified polymorphic DNA. Fish Sci 5:701–707

    Google Scholar 

  • Aleya L, Khedhri I, Oueslati W, Ennouri R, Yamashita C, Zaaboub N, Othmani A, El Bour M, Trabelsi L, Abdel-Daim M, Galgani F, Virgínia M, Martins A, Turki S (2019) World seas: an environmental evaluation (Second Edition) Chapter 10 – Tunisia. In: Volume I: Europe, the Americas and West Africa, pp 261–282

    Google Scholar 

  • Anderson DM (1997) Turning back the harmful red tide. Nature 388:513–514

    CAS  Google Scholar 

  • Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R, Scholin CA (2005) Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. In: The ecology and oceanography of toxic Alexandrium Fundyense blooms in the Gulf of Maine. Deep sea research part II: topical studies in oceanography, vol 52, pp 2467–2490

    Google Scholar 

  • Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012) The globally distributed genus Alexandrium, multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35

    Google Scholar 

  • Antonella P, Luca G (2013) The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res Int 20:6851–6862

    CAS  Google Scholar 

  • Barkallah M, Fendri I, Dhieb A, Gharbi Y, Greub G, Gdoura R (2013) First detection of Waddlia chondrophila in Africa using SYBR Green real-time PCR on veterinary samples. Vet Microbiol 164:101–107

    CAS  Google Scholar 

  • Bastien P, Procop GW, Reischl U (2008) Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol 46:1897–1900

    CAS  Google Scholar 

  • Ben Amor F, Barkallah M, Elleuch F, Karkouch N, Dammak M, Baréa B, Villeneuve P, Abdelkafi S, Fendri I (2017) Cyanobacteria as source of marine bioactive compounds: molecular specific detection based on Δ9 desaturase gene. Int J Biol Macromol 105:1440–1445

    CAS  Google Scholar 

  • Ben Rejeb-Jenhania A, Fathalli A, Ben Naceur H, Hayouni D, Aouani J, Romdhane MS (2019) Screening for alien and harmful planktonic species in the Gulf of Gabes (Tunisia, Southeastern Mediterranean Sea). Reg Stud Mar Sci 27:100526

    Google Scholar 

  • Ben Salem Z, Drira Z, Ayadi H (2015) What factors drive the variations of phytoplankton, ciliate and mesozooplankton communities in the polluted southern coast of Sfax, Tunisia? Environ Sci Pollut R 22:11764–11780

    CAS  Google Scholar 

  • Biré R, Krys S, Frémy JM, Dragacci S, Stirling D, Kharrat R (2002) First evidence on occurrence of gymnodimine in clams from Tunisia. J Nat Toxins 11:269–275

    Google Scholar 

  • Bolch CJS, Salas MF (2007) A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates Gymnodinium catenatum and the Alexandriumtamarensis complex” to Australasia. Harmful Algae 6:465–485

    CAS  Google Scholar 

  • Bouchouicha-Smida D, Sahraoui I, Grami B, Hadj Mabrouk H, Sakka Hlaili A (2014) Population dynamics of potentially harmful algal blooms in Bizerte Lagoon, Tunisia. Afr J Aquat Sci 39:177–188

    Google Scholar 

  • Bourdelais AJ, Jacocks HM, Wright JLC, Bigwarfe PM, Baden DG (2005) A new polyether ladder compound produced by the dinoflagellate Karenia brevis. J Nat Prod 68:2–6

    CAS  Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178

    Google Scholar 

  • Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, Berdalet E, Tyler CR (2019) Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Reviews in Aquaculture 1:1–26. https://doi.org/10.1111/raq.12403

    Article  Google Scholar 

  • Chang FH (1999) A new species of Gymnodinium that caused the 1998 summer human respiratory syndrome and decimation of marine life in Wellington Harbour New Zealand. Harmful Algae News 19:3–4

    Google Scholar 

  • Chang FH, Uddstrom MJ, Pinkerton MH, Richardson KM (2008) Characterizing the 2002 toxic Karenia concordia (Dinophyceae) outbreak and its development using satellite imagery on the north-eastern coast of New Zealand. Harmful Algae 7:532–544

    Google Scholar 

  • Chtourou H, Dahmen I, Jebali A, Karray F, Hassairi I, Abdelkafi S, Ayadi H, Sayadi S, Dhouib A (2015) Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production. Bioproc Biosys Eng 38(7):1381–1392

    CAS  Google Scholar 

  • Clément A, Seguel M, Arzul G, Guzman L, Alarcon C (2001) Widespread outbreak of a haemolytic, ichtyotoxic Gymnodinium sp. in Southern Chile. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewis RJ (eds) Ninth International Conference on Harmful Algal Blooms, 7–11 February 2000, Hobart. Australia. International Oceanographic Commission of UNESCO, Paris, pp 66–69

    Google Scholar 

  • Cuadrado A, De Bustos A, Figueroa RI (2019) Chromosomal markers in the genus Karenia: towards an understanding of the evolution of the chromosomes, life cycle patterns and phylogenetic relationships in dinoflagellates. Sci Rep 9:3072. https://doi.org/10.1038/s41598-018-35785-75

    Article  Google Scholar 

  • Dammak-Zouari H, Hamza A, Bouain A (2009) Gymnodiniales in the Golf of Gabes (Tunisia). Cah Biol Mar 50:153–170

    Google Scholar 

  • Deeds JR, Terlizzi DE, Adolf JE, Stoecker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae) – a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169–189

    CAS  Google Scholar 

  • Drira Z, Hamza A, Bel Hassen M, Ayadi H, Bouaïn A, Aleya L (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia Eastern Mediterranean Sea). Sci Mar 72:59–71

  • Ebenezer V, Medlin LK, Ki JS (2012) Molecular detection, quantification, and diversity evaluation of microalgae. Mar Biotechnol 14:129–142

    CAS  Google Scholar 

  • Eickhorst T, Tippkotter R (2008) Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalysed reporter deposition (CARD-FISH). Soil Biol Biochem 40:1883–1891

    CAS  Google Scholar 

  • Elleuch F, Ben Hlima H, Barkallah M, Baril P, Abdelkafi S, Pichon C, Fendri I (2019) Carotenoids overproduction in Dunaliella sp.: transcriptional changes and new insights through lycopene cyclase regulation. Appl Sci 9(24):5389

    CAS  Google Scholar 

  • Elleuch F, Baril P, Barkallah M, Perche F, Abdelkafi S, Fendri I, Pichon C (2020) Deciphering the biological activities of Dunaliella sp. aqueous extract from stressed conditions on breast cancer: from in vitro to in vivo investigations. Int J Mol Sci 21(5):1719

    Google Scholar 

  • Feki W, Hamza A, Bel Hassen M, Rebai A (2008) Les efflorescences phytoplanctoniques dans le golfe de Gabès (Tunisie) au cours de dix ans de surveillance (1995-2005). Bull inst Nat Technol Mer Salammbô. 35:105–116

    Google Scholar 

  • Feki W, Hamza A, Frossard V, Abdennadher M, Hannachi I, Jacquot M, Belhassen M, Aleya L (2013) What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean Sea. Harmful Algae 23:8–18

    Google Scholar 

  • Feki-Sahnoun W, Hamza A, Njah H, Barraj N, Mahfoudi M, Rebai A, Bel Hassen M (2017) A Bayesian network approach to determine environmental factors controlling Karenia selliformis occurrences and blooms in the Gulf of Gabès, Tunisia. Harmful Algae 63:119–132

  • Feki-Sahnoun W, Njah H, Barraj N, Mahfoudi M, Akrout F, Rebai A, Bel hassen M, Hamza A (2019) Influence of phosphorus-contaminated sediments in the abundance of potentially toxic phytoplankton along the Sfax coasts (GULF OF GABES, TUNISIA). Journal of Sedimentary Environments 4:458–470. https://doi.org/10.12957/jse.2019.47324

  • Fendri I, Chaari A, Dhouib A, Jlassi B, Abousalham A, Carriere F, Sayadi S, Abdelkafi S (2010) Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD-1, from Tunisian soil. Environ Technol 31(1):87–95

    CAS  Google Scholar 

  • Galluzzi L, Bertozzini E, Penna A, Perini F, Garces E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol 22:1–9

    CAS  Google Scholar 

  • Ghrabi A, Yoshida M (2002) Leg-related information and in situ observation data. RPP-SEPMCL Initial Report, pp 1–12.

  • Glibert PM, Berdalet E, Burford MA, Pitcher GC, Zhou M (2018) Harmful algal blooms and the importance of understanding their ecology and oceanography. Global Ecol Oceanogr Harmful Algal Blooms. 232:9–25

    Google Scholar 

  • Gobler CJ (2020) Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91:101731. https://doi.org/10.1016/j.hal.2019.101731

    Article  Google Scholar 

  • Godhe A, Otta SK, Rehnstam-Holm AS, Karunasagar I, Karunasagar I (2001) Polymerase chain reaction in detection of Gymnodinium mikimotoi and Alexandrium minutum in field samples from southwest India. Mar Biotechnol 3:152–162

    CAS  Google Scholar 

  • Grattan LM, Holobaugh S, Morris JG (2016) Harmful algal blooms and public health. Harmful Algae 57:2–8

    Google Scholar 

  • Gravinese PM, Saso E, Lovko VJ, Blum P, Cole C, Pierced RH (2019) Karenia brevis causes high mortality and impaired swimming behavior of Florida stone crab larvae. Harmful Algae 84:188–194

    Google Scholar 

  • Guillou L, Nézan E, Cueff V, Erard-Le Denn E, Cambon-Bonavita MA, Gentien P, Barbier G (2002) Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist 153:223–238

    CAS  Google Scholar 

  • Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF (2016) DNA barcoding green microalgae isolated from neotropical inland waters. PLoS One 11. https://doi.org/10.1371/journal.pone.0149284

  • Hallegraeff GM, Mooney B, Evans K (2010) What triggers fish-killing Karlodinium veneficum dinoflagellate blooms in the Swan Canning River system? Final report SRT project no. RSG09TAS01. Swan Canning Research and Innovation Program, pp 1–30.

  • Hamza A, El Abed A (1994) Les eaux colorées dans le golfe de Gabès: Bilan de six ans de surveillance (1989-1994). Bull Inst Nat Sci Tech Mer 21:66–72

    Google Scholar 

  • Haywood AJ, Steidinger KA, Truby EW (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179

    Google Scholar 

  • Heil CA, Glibert PM, Al-Sarawi MA, Faraj M, Behbehani M, Husain M (2001) First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Mar Ecol Progr Ser 214:15–23

    CAS  Google Scholar 

  • Hernández-López EL, Gasperin J, Bernáldez-Sarabia J, Licea-Navarro AF, Guerrero A, Lizárraga-Partida ML (2019) Detection of Alcanivorax spp., Cycloclasticus spp., and Methanomicrobiales in water column and sediment samples in the Gulf of Mexico by qPCR. Environ Sci Pollut Res 26:35131–35139. https://doi.org/10.1007/s11356-019-06551-7

    Article  CAS  Google Scholar 

  • Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732

    CAS  Google Scholar 

  • John U, Medlin LK, Groben R (2005) Development of specific rRNA probes to distinguish between geographic clades of the Alexandrium tamarense species complex. J Plankton Res 27:199–204

    CAS  Google Scholar 

  • Kegel JU, Del Amo Y, Costes L, Medlin LK (2013) Testing a microarray to detect and monitor toxic microalgae in Arcachon Bay in France. Microarrays 2:1–23

    Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Google Scholar 

  • Kempton JW, Lewitus AJ, Deeds JR, McHugh Law J, Place AR (2002) Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1:233–241

    CAS  Google Scholar 

  • Kumar SM, Sharma SA (2020) Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr:1–22. https://doi.org/10.1080/10408398.2020.1738334

  • Landsberg JH, Steidinger KA (1998) A historical review of Gymnodinium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Proceedings of the VIII International Conference on Harmful Algae, Vigo, Spain, 25-29 June 1997. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 97–100

    Google Scholar 

  • Lassudrie M, Hégaret H, Wikfors GH, da Silvad PM (2020) Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: a review. Dev Comp Immunol 108:103660. https://doi.org/10.1016/j.dci.2020.103660

    Article  CAS  Google Scholar 

  • Lee EH, Cho KS, Son A (2017) Detection and quantification of toxin-producing Microcystis aeruginosa strain in water by NanoGene assay. J Microbiol Biotechnol 27:808–815

    CAS  Google Scholar 

  • Leutou AS, McCall JR, York R, Govindapur RR, Bourdelais AJ (2020) Anti-inflammatory activity of glycolipids and a polyunsaturated fatty acid methyl ester isolated from the marine dinoflagellate Karenia mikimotoi. Mar Drugs 8:138. https://doi.org/10.3390/md18030138

    Article  Google Scholar 

  • Loeblich AR, Smith VE (1968) Chloroplast pigments of the marine dinoflagellate Gyrodinium resplendens. Lipids 3:5–13

    CAS  Google Scholar 

  • Marrouchi R, Benoit E, Kharrat R, Molg OJ (2009) Gymnodimines : a family of phycotoxins contaminating shellfish. Toxins and Signalling. pp:79–83

  • Mbareche H, Veillette M, Bilodeau G, Duchaine C (2020) Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 8:e8523. https://doi.org/10.7717/peerj.8523

    Article  Google Scholar 

  • Medlin LK, Orozco J (2017) Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful Algal Bloom Species. Sensors 17:1–21

    Google Scholar 

  • Mensi F, Ksouri J, Hammami W, Romdhane MS (2009) L’algue rouge Gracilaria verrucosa (hudson) papenfuss de la lagune de Bizerte (Tunisie septentrionale): essai de culture en mode suspendu et composition biochimique. Bull Inst Natn Scien Tech Mer de Salammbô 36:125–137

    Google Scholar 

  • Miles CO, Wilkins AL, Stirling DJ, Mackenzie L (2000) New analogue of gymnodimine from a Gymnodinium species. J Agric Food Chem 48:1373–1376

    CAS  Google Scholar 

  • Müller MN, Mardones JI, Dorantes-Aranda JJ (2020) Editorial: harmful algal blooms (HABs) in Latin America. Front Mar Sci 7:34. https://doi.org/10.3389/fmars.2020.00034

    Article  Google Scholar 

  • Novoveská L, Robertson A (2019) Brevetoxin-producing spherical cells present in Karenia brevis bloom: evidence of morphological plasticity? J Mar Sci Eng 7:24. https://doi.org/10.3390/jmse7020024

    Article  Google Scholar 

  • Paches M, Aguado D, Martínez-Guijarro R, Romero I (2019) Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environ Sci Pollut Res 26:14266–14276. https://doi.org/10.1007/s11356-019-04660-x

    Article  CAS  Google Scholar 

  • Pal A, Sirota L, Maudrua T, Peden K, Lewis JAM (2006) Real-time, quantitative PCR assays for the detection of virus-specific DNA in samples with mixed populations of polyomaviruses. J Virol Methods 135:32–42

    CAS  Google Scholar 

  • Patel SS, Lovko VJ, Lockey RF (2020) Red tide: overview and clinical manifestations. J Allergy Clin Immunol. 8:1219–1223. https://doi.org/10.1016/j.jaip.2019.10.030

    Article  Google Scholar 

  • Penna A, Bertozzini E, Battocchi C, Galluzzi L, Giacobbe MG, Vila M, Garces E, Luglie A, Magnani M (2007) Monitoring of HAB species in the Mediterranean Sea through molecular methods. J Plankton Res 29:19–38

    CAS  Google Scholar 

  • Pierce RH, Henry MS (2008) Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 17:623–631

    CAS  Google Scholar 

  • Place AR, Bowers HA, Bachvaroff TR, Adolf JE, Deeds JR, Sheng J (2012) Karlodinium veneficum—The little dinoflagellate with a big bite. Harmful Algae 14:179–195

    CAS  Google Scholar 

  • Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:39–48

    CAS  Google Scholar 

  • Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50

    CAS  Google Scholar 

  • Pulido OM (2016) Phycotoxins by harmful algal blooms (HABS) and human poisoning: an overview. Int Clin Pathol J 2:145–152. https://doi.org/10.15406/icpjl.2016.02.00062

    Article  Google Scholar 

  • Roegner A, Sitoki L, Weirich C, Corman J, Owage D, Umami M, Odada E, Miruka J, Ogari Z, Smith W, Rejmankova E, Miller TR (2020) Harmful algal blooms threaten the health of peri-urban fisher communities: a case study in Kisumu Bay, Lake Victoria. Kenya. Expos Health. https://doi.org/10.1007/s12403-019-00342-8

  • Ruvindy R, Bolch CJ, MacKenzie L, Smith KF, Murray SA (2018) qPCR assays for the detection and quantification of multiple paralytic shellfish toxin-producing species of Alexandrium. Front Microbiol 9:1–12

    Google Scholar 

  • Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T (2005) Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate Karenia (formerly Gymnodinium) mikimotoi. Tetrahedron Lett 46:3537–3540

    CAS  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246

    CAS  Google Scholar 

  • Scorzetti G, Brand LE, Hitchcock GL, Rein KS, Sinigalliano CD, Fell JW (2009) Multiple simultaneous detection of harmful algal blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis. Harmful Algae 8:196–211

    CAS  Google Scholar 

  • Shi F, McNabb P, Rhodes L, Holland P, Webb S, Adamson J, Immers A, Gooneratne R, Holland J (2012) The toxic effects of three dinoflagellate species from the genus Karenia on invertebrate larvae and finfish. New Zeal J Mar Fresh 46:149–165

    CAS  Google Scholar 

  • Sildever S, Kawakami Y, Kanno N, Kasai H, Shiomoto A, Katakura S, Nagai S (2019) Toxic HAB species from the Sea of Okhotsk detected by a metagenetic approach, seasonality and environmental drivers. Harmful Algae 87:101631. https://doi.org/10.1016/j.hal.2019.101631

    Article  CAS  Google Scholar 

  • Smith KF, de Salas M, Adamson J, Rhodes LL (2014) Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family Gymnodiniaceae. Mar Drugs 12:1361–1376

    CAS  Google Scholar 

  • Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J (2019) The Ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol 37:761–774. https://doi.org/10.1016/j.tibtech.2018.12.002

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Anslan S, Riit T, Kõljalg U (2015) Response to comment on “Global diversity and geography of soil fungi”: analytical biases in microbial diversity studies. Science 359:936

    Google Scholar 

  • Throndsen J (1978) Preservation and storage. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, France, pp 69–74

    Google Scholar 

  • Trainer VL, Moore SK, Hallegraeff G, Kudela RM, Clement A, Mardones JI, Cochlan WP (2020) Pelagic harmful algal blooms and climate change: lessons from nature’s experiments with extremes. Harmful Algae 91:101591. https://doi.org/10.1016/j.hal.2019.03.009

    Article  Google Scholar 

  • Turki T, El Abed A (2001) On the presence of potentially toxic algae in the lagoons of Tunisia. Harmful Algae News 22:10–12

    Google Scholar 

  • Van Dolah FM, Kohli GS, Morey JS, Murray SA (2017) Both modular and single-domain type I polyketide synthases are expressed in the brevetoxin-producing dinoflagellate, Karenia brevis (Dinophyceae). J Phycol 53:1325–1339. https://doi.org/10.1111/jpy.12586

    Article  CAS  Google Scholar 

  • Van Wagoner RM, Satake M, Bourdelais AJ, Baden DG, Wright JLC (2010) Absolute configuration of brevisamide and brevisin: confirmation of a universal biosynthetic process for Karenia brevis polyethers. J Nat Prod 73:1177–1179

    Google Scholar 

  • Vila M, Camp J, Garces E, Maso M, Delgado M (2001) High resolution spatio-temporal detection of HABs in confined waters of the NW Mediterranean. J Plankton Res 23:497–514

    Google Scholar 

  • Wang H, Hu Z, Chai Z, Deng Y, Zhan Z, Tang YZ (2020) Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community. Acta Oceanol Sin 39:110–119. https://doi.org/10.1007/s13131-020-1585-1

    Article  CAS  Google Scholar 

  • Watkins SM, Reich A, Fleming LE, Hammond R (2008) Neurotoxic shellfish poisoning. Mar Drugs 6:431–455

    CAS  Google Scholar 

  • Yang X, Zhou L, TanY SX, Zhao Z, Nie D, Zhou C, Liu H (2017) Development and validation of a liquid chromatography-tandem mass spectrometry method coupled with dispersive solid-phase extraction for simultaneous quantification of eight paralytic shellfish poisoning toxins in shellfish. Toxins 9:206. https://doi.org/10.3390/toxins9070206

    Article  CAS  Google Scholar 

  • Zhang C, Chen G, Wang Y, Sun R, Zhou J (2018) MHBMDAA: membrane-based DNA array with high resolution and sensitivity for toxic microalgae monitoring. Harmful Algae 80:107–116

    CAS  Google Scholar 

Download references

Acknowledgments

This study was performed in the framework of the PRF-2017-D1P2 Project (2018–2020) with the financial support of Tunisian Ministry of Higher Eduction and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihen Elleuch.

Additional information

Responsible Editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elleuch, J., Barkallah, M., Smith, K.F. et al. Quantitative PCR assay for the simultaneous identification and enumeration of multiple Karenia species. Environ Sci Pollut Res 27, 36889–36899 (2020). https://doi.org/10.1007/s11356-020-09739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09739-4

Keywords

Navigation