Skip to main content

Advertisement

Log in

Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The interaction between toxic heavy metals and bio-elements in internal organs and femoral bones and their potential impacts on bone structural properties and renal histopathological changes in bank voles and snow voles were investigated. Our results reveal that heavy metals Hg and Pb accumulate more in femoral bones of alpine habitats than forests. In snow voles, the parameters of the primary osteons’ vascular canals (length, average perimeter and area) simultaneously decreased with an increase of Pb and Sr. Wider primary osteons’ vascular canals of snow voles contained decreased levels of K, but increased Ba. In bank voles, the number of primary osteons increased in alpine habitats along with K, Hg, and Pb accumulation. In the kidneys of bank voles, rising levels of Rb, Hg, and Zn were detected in alpine habitats. Hg increases the most in kidney tissue from alpine habitats in both vole species, and Hg levels (mean value 0.25 μg/g, max. value 0.55 μg/g) in the renal tissues of bank voles from alpine localities are similar to Hg levels from Hg-polluted industrial areas in other studies. This reflects that alpine areas of the Tatra Mountains are highly contaminated with Hg. The intensity of renal hemosiderosis relates significantly to Zn, Fe, and Cu levels in snow voles, with Fe and Zn levels in bank voles from forest habitats, and with Rb in bank voles from alpine habitats. The intensity of tubule necrosis in renal tissues of bank voles from alpine habitats was negatively related to Se content. In bank voles from forest habitats, significant positive correlations were found between the intensity of glomerular hyperplasia and amounts of Zn. The interactions of the detected element’s association with bone tissue and internal organs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El-Aziz GS, El-Fark MM, Saleh HA (2012) The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E. Anat Rec Adv Integr Anat Evol Biol 295:939–949

    CAS  Google Scholar 

  • Agrawal R, Chansouria JP (1991) Alterations in plasma sodium and potassium levels following chronic oral ingestion of lead, mercury and cadmium in male albino rats. Indian J Exp Biol 29:767–769

    CAS  Google Scholar 

  • Al Sayegh Petkovšek S, Kopušar N, Kryštufek B (2014) Small mammals as biomonitors of metal pollution: a case study in Slovenia. Environ Monit Assess 186:4261–4274

    Google Scholar 

  • Al-Tubaikh JA (2010): Hemosiderosis and hemochromatosis. In: Al-Tubaikh JA (Editor), Internal medicine: an illustrated radiological guide. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 290–292

  • Baker DH, Ammerman CB (1995) 7 - copper bioavailability. In: Ammerman CB, Baker DH, Lewis AJ (eds) Bioavailability of nutrients for animals. Academic Press, San Diego, pp 127–156

    Google Scholar 

  • Ballová Z, Janiga M (2018) Lead levels in the bones of small rodents from Alpine and subalpine habitats in the Tian-Shan Mountains, Kyrgyzstan. Atmosphere 9:35

    Google Scholar 

  • Ballová Z, Janiga M, Hančinský R (2019) Comparison of element concentrations (Ba, Mn, Pb, Sr, Zn) in the bones and teeth of wild ruminants from the West Carpathians and the Tian-Shan Mountains as indicators of air pollution. Atmosphere 10:64

    Google Scholar 

  • Belcheva M, Metcheva R, Artinian A, Nicolova E (1998) Assessment of toxic elements in the snow vole (Chionomys nivalis) and its food from Rila mountains. Observatoire de Montagne de Moussala OM2 7:276–280

    Google Scholar 

  • Bhoelan BS, Stevering CH, van der Boog ATJ, van der Heyden MAG (2014) Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol 52:584–593

    CAS  Google Scholar 

  • Bligh PH, Taylor DM (1963) Comparative studies of the metabolism of strontium and barium in the rat. Biochem J 87:612–618

    CAS  Google Scholar 

  • Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    CAS  Google Scholar 

  • Bridges CC, Zalups RK (2017) The aging kidney and the nephrotoxic effects of mercury. J Toxicol Environ Health B Crit Rev 20:55–80

    CAS  Google Scholar 

  • Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD (2002) The toxicology of mercury. Lab Med 33:614–625

    Google Scholar 

  • Brzozowska A (1989) Interaction of iron, zinc and copper in the body of animals and humans. Rocz Panstw Zakl Hig 40:302–312

    CAS  Google Scholar 

  • Buddhachat K, Klinhom S, Siengdee P, Brown JL, Nomsiri R, Kaewmong P, Thitaram C, Mahakkanukrauh P, Nganvongpanit K (2016) Elemental analysis of bone, teeth, horn and antler in different animal species using non-invasive handheld X-ray fluorescence. PLoS One 11

  • Buddhachat K, Brown JL, Thitaram C, Klinhom S, Nganvongpanit K (2017) Distinguishing real from fake ivory products by elemental analyses: a Bayesian hybrid classification method. Forensic Sci Int 272:142–149

    CAS  Google Scholar 

  • Bull KR, Roberts RD, Inskip MJ, Goodman GT (1977) Mercury concentrations in soil, grass, earthworms and small mammals near an industrial emission source. Environ Pollut (1970) 12:135–140

    Google Scholar 

  • Burk RF, Hill KE, Awad JA, Morrow JD, Lyons PR (1995) Liver and kidney necrosis in selenium-deficient rats depleted of glutathione. Lab Investig 72:723–730

    CAS  Google Scholar 

  • Camacho-Cardenosa M, Camacho-Cardenosa A, Timon R, Olcina G, Tomas-Carus P, Brazo-Sayavera J (2019) Can hypoxic conditioning improve bone metabolism? A systematic review. Int J Environ Res Public Health 16

  • Cho GJ, Park HT, Shin JH, Hur JY, Kim SH, Lee KW, Kim T (2012) The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause (New York, N.Y.) 19:576–581

    Google Scholar 

  • Chovancová H, Martiniaková M, Omelka R, Grosskopf B, Toman R (2011) Structural changes in femoral bone tissue of rats after intraperitoneal administration of nickel. Pol J Environ Stud 20:1147–1152

    Google Scholar 

  • Conti MI, Terrizzi AR, Lee CM, Mandalunis PM, Bozzini C, Piñeiro AE, Martínez MP (2012) Effects of lead exposure on growth and bone biology in growing rats exposed to simulated high altitude. Bull Environ Contam Toxicol 88:1033–1037

    CAS  Google Scholar 

  • Damek-Poprawa M, Sawicka-Kapusta K (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology 186:1–10

    CAS  Google Scholar 

  • Damek-Poprawa M, Sawicka-Kapusta K (2004) Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environ Res 96:72–78

    CAS  Google Scholar 

  • Dardouri K, Haouem S, Gharbi I, Sriha B, Haouas Z, El Hani A, Hammami M (2016) Combined effects of Cd and Hg on liver and kidney histology and function in Wistar rats. J Agric Chem Environ 5:159–169

    CAS  Google Scholar 

  • Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 28:363–375

    CAS  Google Scholar 

  • Desouza ED, Gherase MR, Fleming DE, Chettle DR, O’Meara JM, McNeill FE (2017) Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo–Alpha and Delta models. Appl Radiat Isot 123:82–93

    CAS  Google Scholar 

  • Diamond GL, Zalups RK (1998) Understanding renal toxicity of heavy metals. Toxicol Pathol 26:92–103

    CAS  Google Scholar 

  • Dunstan CR, Blair JM, Zhou H, Seibel MJ (2007) 6.21 - bone, mineral, connective tissue metabolism. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 495–520

    Google Scholar 

  • Ďúranová H, Martiniaková M, Omelka R, Grosskopf B, Boboňová I, Toman R (2014) Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta Vet Scand 56:64

    Google Scholar 

  • Ensrud KE, Barbour K, Canales MT, Danielson ME, Boudreau RM, Bauer DC, LaCroix AZ, Ishani A, Jackson RD, Robbins JA (2012) Renal function and nonvertebral fracture risk in multiethnic women: the Women’s Health Initiative (WHI). Osteoporos Int 23:887–899

    CAS  Google Scholar 

  • Fallah A, Mohammad-Hasani A, Colagar AH (2018) Zinc is an essential element for male fertility: a review of Zn roles in men's health, germination, sperm quality, and fertilization. J Reprod Infertil 19:69–81

    Google Scholar 

  • Fleming DE, Groves JW, Gherase MR, George GN, Pickering IJ, Ponomarenko O, Langan G, Spallholz JE, Alauddin M, Ahsan H, Ahmed S (2015) Soft tissue measurement of arsenic and selenium in an animal model using portable X-ray fluorescence. Radiat Phys Chem 116:241–247

    CAS  Google Scholar 

  • Glendening BL, Schrenk WG, Parrish DB (1956) Effects of rubidium in purified diets fed rats. J Nutr 60:563–579

    CAS  Google Scholar 

  • Gocha TP, Agnew AM (2016) Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment. J Anat 228:733–745

    Google Scholar 

  • Goyer RA, Rhyne BC (1973) Pathological effects of lead. Int Rev Exp Pathol 12:1–77

    CAS  Google Scholar 

  • Haizhou W (2015): Certificate of certified reference material NCS ZC 71001. In: Steel CNACfIa (Hrsg.), Beijing, China

  • Hennig C, Thomas CDL, Clement JG, Cooper DML (2015) Does 3D orientation account for variation in osteon morphology assessed by 2D histology? J Anat 227:497–505

    Google Scholar 

  • Hernández-Becerra E, Gutiérrez-Cortez E, Del Real A, Rojas-Molina A, Rodríguez-García M, Rubio E, Quintero-García M, Rojas-Molina I (2017) Bone mineral density, mechanical, microstructural properties and mineral content of the femur in growing rats fed with Cactus Opuntia ficus indica (L.) mill. (Cactaceae) cladodes as calcium source in diet. Nutrients 9:108

    Google Scholar 

  • Homma-Takeda S, Terada Y, Iso H, Ishikawa T, Oikawa M, Konishi T, Imaseki H, Shimada Y (2009) Rubidium distribution in kidneys of immature rats. Int J PIXE 19:39–45

    CAS  Google Scholar 

  • Huang X, Hu J, Qin F, Quan W, Cao R, Fan M, Wu X (2017) Heavy metal pollution and ecological assessment around the Jinsha Coal-Fired Power Plant (China). Int J Environ Res Public Health 14:1589

    Google Scholar 

  • Hurley LS, Gowan J, Milhaud G (1969) Calcium metabolism in manganese-deficient and zinc-deficient rats. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 130:856–860

    CAS  Google Scholar 

  • Hurta V, Buchalová Z (2019) Biogenic and metallic element accumulation in the European Perch (Perca fluviatilis) in the largest dam in Slovakia. Pol J Environ Stud 28:657–667

    CAS  Google Scholar 

  • Isfaoun A, Bureau F, Mouly-Boudey M, Drosdowsky M, Arhan P, Bougle D (1997) Relationships between iron and zinc metabolism: predictive value of digestive absorption on tissue storage. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 11:23–27

    CAS  Google Scholar 

  • Janiga M, Haas M (2019) Alpine accentors as monitors of atmospheric long-range lead and mercury pollution in alpine environments. Environ Sci Pollut Res 26:2445–2454

    CAS  Google Scholar 

  • Janiga M, Hrehová Z, Dimitrov K, Gerasimova C, Lovari S (2016) Lead levels in the bones of snow voles Chionomys nivalis (Martins, 1842) (Rodentia) from European mountains: a comparative study of populations from the Tatra (Slovakia), Vitosha and Rila (Bulgaria). Acta Zoologica Bulgarica 68:291–295

    Google Scholar 

  • Janiga M, Ballová Z, Angelovičová M, Korňan J (2019) The snow vole and Tatra marmot as different rodent bioindicators of lead pollution in an alpine environment: a hibernation effect. Pol J Environ Stud 28:1–11

    Google Scholar 

  • Jia L, Zhang L, Shao C, Song E, Sun W, Li M, Gao Y (2009) An attempt to understand kidney's protein handling function by comparing plasma and urine proteomes. PLoS One 4:e5146

    Google Scholar 

  • Jihen EH, Imed M, Fatima H, Abdelhamid K (2008) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: histology and Cd accumulation. Food Chem Toxicol 46:3522–3527

    CAS  Google Scholar 

  • Jimi E (2017) The role of osteoclastic bone resorption on bone remodeling. Clinical Calcium 27:1689–1695

    Google Scholar 

  • Jones TC, Hunt RD, King NW (1997) Veterinary pathology. Williams & Wilkins, London, Baltimore, Maryland

    Google Scholar 

  • Kim YH, Shim JY, Seo MS, Yim HJ, Cho MR (2016) Relationship between blood mercury concentration and bone mineral density in Korean men in the 2008-2010 Korean National Health and nutrition examination survey. Korean J Fam Med 37:273–278

    Google Scholar 

  • Kocić K, Spasić T, Urošević MA, Tomašević M (2014) Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J Cult Herit 15:227–233

    Google Scholar 

  • Komov VT, Ivanova ES, Poddubnaya NY, Gremyachikh VA (2017) Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets). Environ Monit Assess 189:104

    CAS  Google Scholar 

  • Lambert H, Frassetto L, Moore JB, Torgerson D, Gannon R, Burckhardt P, Lanham-New S (2015) The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporosis International: a Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 26:1311–1318

    CAS  Google Scholar 

  • Le Louarn H, Quéré J-P (2003) Les rongeurs de France: faunistique et biologie. Editions Quae

    Google Scholar 

  • Lentini P, Zanoli L, Granata A, Signorelli SS, Castellino P, Dell'Aquila R (2017) Kidney and heavy metals - the role of environmental exposure (review). Mol Med Rep 15:3413–3419

    CAS  Google Scholar 

  • MacDonald RA (1963) Hemochromatosis and Hemosiderosis. Kanzo 5:34–36

    Google Scholar 

  • Martiniaková M, Grosskopf B, Vondráková M, Omelka R, Fabiš M (2005) Observation of the microstructure of rat cortical bone tissue. Scripta Med 78:45–50

    Google Scholar 

  • Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51:1235–1239

    Google Scholar 

  • Martiniaková M, Omelka R, Grosskopf B, Sirotkin AV, Chrenek P (2008) Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet Scand 50:15–15

    Google Scholar 

  • Martiniaková M, Omelka R, Jančová A, Stawarz R, Formicki G (2011) Concentrations of selected heavy metals in bones and femoral bone structure of bank (Myodes glareolus) and common (Microtus arvalis) voles from different polluted biotopes in Slovakia. Arch Environ Contam Toxicol 60:524–532

    Google Scholar 

  • Martiniaková M, Boboňová I, Omelka R, Grosskopf B, Stawarz R, Toman R (2013) Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium. Acta Vet Scand 55:8

    Google Scholar 

  • Martinková B, Janiga M, Pogányová A (2019) Mercury contamination of the snow voles (Chionomys nivalis) in the West Carpathians. Environ Sci Pollut Res 26:35988–35995. https://doi.org/10.1007/s11356-019-06714-6

    Article  CAS  Google Scholar 

  • Marx SK, McGowan HA (2011): Long-distance transport of urban and industrial metals and their incorporation into the environment: sources, transport pathways and historical trends. In: Zereini F , Wiseman CLS (Editors), Urban airborne particulate matter: origin, chemistry, fate and health impacts. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 103–124

  • Meltzer HL (1991) A pharmacokinetic analysis of long-term administration of rubidium chloride. J Clin Pharmacol 31:179–184

    CAS  Google Scholar 

  • Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763:621–635. https://doi.org/10.1016/j.bbamcr.2006.03.013

    Article  CAS  Google Scholar 

  • Mesquita M, Pedroso TF, Oliveira CS, Oliveira VA, do Santos RF, Bizzi CA, Pereira ME (2016) Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure. EXCLI J 15:256–267

    Google Scholar 

  • Metcheva R, Teodorova S, Topashka-Ancheva M (2001) A comparative analysis of the heavy metals and toxic elements loading indicated by small mammals in different Bulgarian regions. Acta Zool Bulg 53:61–80

    Google Scholar 

  • Metcheva R, Beltcheva M, Chassovnikarova T (2008) The snow vole (Chionomys nivalis) as an appropriate environmental bioindicator in alpine ecosystems. Sci Total Environ 391:278–283

    CAS  Google Scholar 

  • Morton B, Harrigan-Lum J, Albagli L, Jooss T (1974) The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun 56:372–379

    CAS  Google Scholar 

  • Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P (2016a) Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res 173:21–29

    CAS  Google Scholar 

  • Nganvongpanit K, Buddhachat K, Klinhom S, Kaewmong P, Thitaram C, Mahakkanukrauh P (2016b) Determining comparative elemental profile using handheld X-ray fluorescence in humans, elephants, dogs, and dolphins: preliminary study for species identification. Forensic Sci Int 263:101–106

    CAS  Google Scholar 

  • Noor Z, Sumitro SB, Hidayat M, Rahim AH, Sabarudin A, Umemura T (2012) Atomic mineral characteristics of Indonesian osteoporosis by high-resolution inductively coupled plasma mass spectrometry. Sci World J 2012:6

    Google Scholar 

  • O'Dell BL, Sunde RA (1997) Handbook of nutritionally essential mineral elements. CRC Press

  • Owen DH, Katz DF (2005) A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl 26:459–469

    CAS  Google Scholar 

  • Pamphlett R, Kum Jew S (2019) Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders. Frontiers in Medicine 6

  • Patton KT, Thibodeau GA (2014) Anatomy & Physiology - E-Book

  • Peixoto NC, Pereira ME (2007) Effectiveness of ZnCl2 in protecting against nephrotoxicity induced by HgCl2 in newborn rats. Ecotoxicol Environ Saf 66:441–446

    CAS  Google Scholar 

  • Peixoto NC, Serafim MA, Flores EM, Bebianno MJ, Pereira ME (2007) Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Sci 81:1264–1271

    CAS  Google Scholar 

  • Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57:184–193

    CAS  Google Scholar 

  • Pyszel A, Wrobel T, Szuba A, Andrzejak R (2005) Effect of metals, benzene, pesticides and ethylene oxide on the haematopoietic system. Med Pr 56:249–255

    CAS  Google Scholar 

  • Reed WP (1992): Certificate of analysis standard reference material 1486. Bone Meal. In: Technology NIoS (Hrsg.), Gaithersburg, Maryland

  • Richter GW (1974) Effects of cyclic starvation-feeding and of splenectomy on the development of hemosiderosis in rat livers. Am J Pathol 74:481–506

    CAS  Google Scholar 

  • Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. J Toxicol 2018:4854152–4854152

    Google Scholar 

  • Saljooghi AS, Delavar-mendi F (2011) The effect of mercury in iron metabolism in rats. J Clin Toxicol:s3

  • Shao J, Shi J, Duo B, Liu C, Gao Y, Fu J, Yang R, Jiang G (2016) Mercury in alpine fish from four rivers in the Tibetan Plateau. J Environ Sci 39:22–28

    CAS  Google Scholar 

  • Six KM, Goyer RA (1972) The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J Lab Clin Med 79:128–136

    CAS  Google Scholar 

  • Sontag PT, Steinberg DK, Reinfelder JR (2019) Patterns of total mercury and methylmercury bioaccumulation in Antarctic krill (Euphausia superba) along the West Antarctic Peninsula. Sci Total Environ 688:174–183

    CAS  Google Scholar 

  • Suttle NF (1974) Recent studies of the copper-molybdenum antagonism. Proc Nutr Soc 33:299–305

    CAS  Google Scholar 

  • Suzuki N, Yamamoto M, Watanabe K, Kambegawa A, Hattori A (2004) Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J Bone Miner Metab 22:439–446

    CAS  Google Scholar 

  • Tao H, Man Y, Shi X, Zhu J, Pan H, Qin Q, Liu S (2016) Inconceivable hypokalemia: a case report of acute severe barium chloride poisoning. Case Rep Med 2016:4

    Google Scholar 

  • Tête N, Durfort M, Rieffel D, Scheifler R, Sanchez-Chardi A (2014) Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. Sci Total Environ 481:167–177

    Google Scholar 

  • Tizhe EV, Ibrahim ND-G, Fatihu MY, Onyebuchi II, George BDJ, Ambali SF, Shallangwa JM (2014) Influence of zinc supplementation on histopathological changes in the stomach, liver, kidney, brain, pancreas and spleen during subchronic exposure of Wistar rats to glyphosate. Comp Clin Pathol 23:1535–1543

    CAS  Google Scholar 

  • Van Ryssen JB, Stielau WJ (1981) Effect of different levels of dietary molybdenum on copper and Mo metabolism in sheep fed on high levels of Cu. Br J Nutr 45:203–210

    Google Scholar 

  • Wang W, Yun Z, Peng HZ, Yan SJ, Zhang HT, Qiu XC, Wen YH, Long H, Ma BA (2017) The hypobaric hypoxia environment impairs bone strength and quality in rats. Int J Clin Exp Med 10:9397–9406

    Google Scholar 

  • Weaver CM (2013) Potassium and health. Adv Nutr 4:368S–377S

    CAS  Google Scholar 

  • Weaver CM, Stone MS, Lobene AJ, Cladis DP, Hodges JK (2018) What is the evidence base for a potassium requirement? Nutr Today 53:184–195

    Google Scholar 

  • Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elements Exp Med 11:119–135

    CAS  Google Scholar 

  • Yanagimachi R, Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89:161–174

    CAS  Google Scholar 

  • Yanagisawa H, Miyazaki T, Nodera M, Miyajima Y, Suzuki T, Kido T, Suka M (2014) Zinc-excess intake causes the deterioration of renal function accompanied by an elevation in systemic blood pressure primarily through superoxide radical-induced oxidative stress. Int J Toxicol 33:288–296

    CAS  Google Scholar 

  • Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  Google Scholar 

  • Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in the Alps. Environ Pollut 89:73–80

    CAS  Google Scholar 

  • Zhu K, Devine A, Prince RL (2009) The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporosis International: a Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 20:335–340

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to prof. Marián Janiga for valuable suggestions, consultation, and comments on the scientific and methodological aspects of the study. We would like to thank our colleagues and students for their assistance in the field, especially Zuzana Hrehová, Michal Némethy, Daniela Dúhová, and Bibiána Martinková. For English proofreading and improving, we are indebted to native English-speaking editor Amanda Clarahan.

Funding

This research was funded by European Structural Funds (ITMS: 26210120016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Kompišová Ballová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballová, Z.K., Korec, F. & Pinterová, K. Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. Environ Sci Pollut Res 27, 36411–36426 (2020). https://doi.org/10.1007/s11356-020-09654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09654-8

Keywords

Navigation