Skip to main content
Log in

Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Municipal wastewater reverse osmosis concentrate (ROC) poses health and environmental risks on its disposal as it contains nutrients and harmful organic compounds at elevated concentrations. This study compared a freshwater microalga Chlorella vulgaris and a marine microalga Nannochloropsis salina in suspended and alginate-immobilised cultures for batch and semi-continuous treatment of the ROC. The immobilised algae gave comparable nutrient removal rates to the suspended cells, demonstrating immobilisation had no apparent negative impact on the photosynthetic activity of microalgae. Semi-continuous algal treatment illustrated that the microalgae could remove significant amounts of nutrients (> 50% and > 80% for TN and TP, respectively), predominantly through algal uptake (> 90%), within a short period (48 h) and generate 335–360 mg DCW L-1 d-1 of algal biomass. The treatment also removed a significant amount of organic matter (12.7–13.3 mg DOC L-1 d-1), primarily (> 65%) through the biotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA (2013) Standard methods for the examination of water and wastewater, Theclassics Us

  • Bagastyo AY, Batstone DJ, Rabaey K, Radjenovic J (2013) Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Water Res 47:242–250

    Article  CAS  Google Scholar 

  • Bolch C, Blackburn S (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Appl Phycol 8:5–13

    Article  Google Scholar 

  • Cai T, Ge X, Park SY, Li Y (2013) Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour Technol 144:255–260

    Article  CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent W, DE LA Noiüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112

    Article  CAS  Google Scholar 

  • Choi H (2015) Nutrient removal in reverse osmosis concentrates using a biological aerated filter. Water Sci Technol Water Supply 15:302–307

    Article  CAS  Google Scholar 

  • Chung CM, Hong SW, Cho K, Hoffmann MR (2018) Degradation of organic compounds in wastewater matrix by electrochemically generated reactive chlorine species: kinetics and selectivity. Catal Today 313:189–195

    Article  CAS  Google Scholar 

  • Cruz I, Bashan Y, Hernàndez-Carmona G, De-Bashan L (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858

    Article  CAS  Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26

    Article  Google Scholar 

  • Delrue F, Alvarez-Díaz P, Fon-Sing S, Fleury G, Sassi J-F (2016) The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies 9:132

    Article  Google Scholar 

  • EPA Victoria (2016) Code of practice – onsite wastewater management. s.l.: Environmental Protection Authority Victoria

  • Gani P, Mohamed Sunar N, Peralta HM, Abdul Latiff AA, Ab Razak AR (2016) Influence of initial cell concentrations on the growth rate and biomass productivity of microalgae in domestic wastewater

  • He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  Google Scholar 

  • Khan SJ, Murchland D, Rhodes M (2009) Management of concentrated waste streams from high-pressuremembrane water treatment systems. Crit Rev Environ Sci Technol 39:367–415

    Article  CAS  Google Scholar 

  • Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741

    Article  Google Scholar 

  • Kuśtrowski P, Natkański P, Rokicińska A, Witek E (2018) Polymer hydrogel-clay (nano)composites: science and fundamentals.

  • Lavín PL, Lourenço SO (2005) An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures. Braz J Oceanogr 53:55–68

    Article  Google Scholar 

  • Lu J, Fan L, Roddick FA (2013) Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation. Chemosphere 93:683–688

    Article  CAS  Google Scholar 

  • Luo H, Zeng X, Liao P, Rong H, Zhang TC, Jason Zhang Z, Meng X (2019) Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr4+ and PNIPAM-interpenetrated networks. Int J Biol Macromol 126:1133–1144

    Article  CAS  Google Scholar 

  • Maeng SK, Khan W, Park JW, Han I, Yang HS, Song KG, Choi WJ, Kim S, Woo H, Kim H-C (2018) Treatment of highly saline RO concentrate using Scenedesmus quadricauda for enhanced removal of refractory organic matter. Desalination 430:128–135

    Article  CAS  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Nuñez VCJ, Voltolina D, Nieves M, Piña P, Medina A, Guerrero MN (2001) Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater. Bioresour Technol 78:161–164

    Article  Google Scholar 

  • Petrovič A, Simonič M (2015) The effect of carbon source on nitrate and ammonium removal from drinking water by immobilised Chlorella sorokiniana. Int J Environ Sci Technol 12:3175–3188

    Article  Google Scholar 

  • Pradhan S, Fan L, Roddick FA (2015) Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2–BAC treatment. Chemosphere 136:198–203

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  • Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E (2015) Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci 6:899–899

    Article  Google Scholar 

  • Sayre R (2010) Microalgae: the potential for carbon capture. BioScience 60:722–727

    Article  Google Scholar 

  • Sheets JP, Ge X, Park SY, Li Y (2014) Effect of outdoor conditions on Nannochloropsis salinacultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresour Technol 152:154–161

    Article  CAS  Google Scholar 

  • Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V (2017) Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol 245:162–170

    Article  CAS  Google Scholar 

  • Solovchenko A, Ismagulova T, Lukyanov A, Vasilieva S, Konyukhov I, Pogosyan S, Lobakova E, Gorelova O (2019) Luxury phosphorus uptake in microalgae. J Appl Phycol 31:2755–2770

    Article  CAS  Google Scholar 

  • Song Y-H, Qiu G-L, Yuan P, Cui X-Y, Peng J-F, Zeng P, Duan L, Xiang L-C, Qian F (2011) Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J Hazard Mater 190:140–149

    Article  CAS  Google Scholar 

  • Sousa LLD, Hora DSD, Sales EA, Louisa (2014) Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source. Braz Arch Biol Technol 57:171–177

    Article  Google Scholar 

  • Taisir M, Teo C, Idris A, Yusuf A (2016) Cultivation of Nannochloropsis sp. using narrow beam angle light emitting diode in an internally illuminated photobioreactor. Bioresour Bioprocess 3:1–8

    Article  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151

    Article  CAS  Google Scholar 

  • Umar M, Roddick F, Fan L (2014) Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview. Crit Rev Environ Sci Technol 45

  • Wang PG, Ji GL, Yu TR (1987) Adsorption of chloride and nitrate by variable charge soils in relation to the electric charge of the soil. Z Pflanzenernaehr Bodenkd 150:17–23

    Article  CAS  Google Scholar 

  • Wang X-X, Wu Y-H, Zhang T-Y, Xu X-Q, Dao G-H, Hu H-Y (2016) Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Water Res 94:215–224

    Article  CAS  Google Scholar 

  • Wang X-X, Zhang T-Y, Dao G-H, Hu H-Y (2018) Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone. Environ Pollut 241:200–211

    Article  CAS  Google Scholar 

  • Wen X, Du K, Wang Z, Luo L, Xu Y, Zhang D, Geng Y, Li Y (2016) Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels 9

  • Whitton R, LE Mével A, Pidou M, Ometto F, Villa R, Jefferson B (2016) Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res 91:371–378

    Article  CAS  Google Scholar 

  • Wong YK, Ho YH, Ho KC, Leung HM, Yung KKL (2017) Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Environ Sci Pollut Res 24:9089–9101

    Article  CAS  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Pub, Paris

    Google Scholar 

  • Yasar F, Abdullah AK (2013) The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak J Bot 45:461–465

    Google Scholar 

  • Yi K, Fan Z, Tang J, Chen A, Shao J, Peng L, Zeng Q, Luo S (2018) The elucidation of surrounding alginate gels on the pollutants degradation by entrapped nanoscale zero-valent iron. Colloids Surf B: Biointerfaces 171:233–240

    Article  CAS  Google Scholar 

  • Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49:534–540

    Article  CAS  Google Scholar 

  • Zhao F, Yu B, Yue Z, Wang T, Wen X, Liu Z, Zhao C (2007) Preparation of porous chitosan gel beads for copper(II) ion adsorption. J Hazard Mater 147:67–73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Barwon Water for the assistance in collecting ROC samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhua Fan.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni, A., Kube, M., Fan, L. et al. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate. Environ Sci Pollut Res 27, 26905–26914 (2020). https://doi.org/10.1007/s11356-020-09103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09103-6

Keywords

Navigation