Skip to main content

Advertisement

Log in

Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury and cadmium are highly dangerous metals that can lead to disastrous effects in animals and humans. The aim of the current research was to elucidate the poisonous effects of mercuric chloride and cadmium chloride individually and in combination on biochemical profiles of plasma and their accumulation in heart. The therapeutic effect of vitamin C against these metals in rabbits was also studied. Mercuric chloride (1.2 μg/g), cadmium chloride (1.5 μg/g), and vitamin C (150 μg/g of body weight) were orally given to treatment groups of the rabbits (1—control; 2—vitamin; 3—CdCl2; 4—HgCl2; 5—vitamin + CdCl2; 6—vitamin + HgCl2; 7—CdCl2 + HgCl2, and 8—vitamin + CdCl2 + HgCl2. After the biometric determination of all intoxicated rabbits, biochemical parameters, viz low-density lipoproteins (LDL), high-density lipoproteins (HDL), cholesterol, creatine kinase, and troponin T (TnT) were analyzed using available kits. Levels of cholesterol (0.7 ± 0.1 mmol/l), creatine kinase (2985.2 ± 11 IU/L), LDL (20.35 ± 1.31 mg/dl), and troponin T (1.22 ± 0.03 μg/l) were significantly (P < 0.05) increased. HDL (84.78 ± 4.30 mg/dl) was significantly (P < 0.05) decreased, while supplementation of vitamin C decreased the adverse effects of CdCl2 and HgCl2 on biochemical parameters in all metal-exposed groups. A similar trend was also seen in rabbits treated with CdCl2 + vitamin and vitamin + CdCl2 + HgCl2. Accumulation of Cd and Hg was higher in heart tissues. This study, therefore, provides awareness on the cardiac toxicity of mercury and cadmium chlorides in the rabbits and the possible protective role of vitamin C against the perturbations induced by metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelaziz I, Elhabiby MI, Ashour AA (2013) Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Hum ExpToxicol 32(4):362–370

    CAS  Google Scholar 

  • Adam KR (1951) The effects of dithiols on the distribution of mercury in rabbits. Br J Pharmacol 6(3):483–491

    CAS  Google Scholar 

  • Adams WJ, Blust R, Borgmann U, Brix KV, DeForest DK (2011) Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manage 7:75–98

    CAS  Google Scholar 

  • Ali S, Hussain S, Khan R, Mumtaz S, Ashraf N, Andleeb S, Shakir HA, Tahir HM, Khan MKA, Ulhaq M (2019) Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits. Environ Sci Pollut Res Int 26(4):3909–3920

    CAS  Google Scholar 

  • Ali S, Ejaz M, Dar KK, Nasreen S, Ashraf N, Gillani SF, Shafi N, Safeer S, Khan MA, Andleeb S, Mughal TA (2020) Evaluation of chemopreventive and chemotherapeutic effect of Artemisia vulgaris against diethylnitrosamine induced hepatocellular carcinogenesis in Balb C mice. Braz J Biol. https://doi.org/10.1590/1519-6984.185979

  • Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2:870–925

    Google Scholar 

  • Ashe WF, Largent EJ, Dutra FR, Hubbard DM, Blackstone M (1953) Behaviour of mercury in the animal organism following inhalation. Arch IndustHyg Occupational Med 7(1):19–43

    CAS  Google Scholar 

  • Bashandy S (2006) Beneficial effect of combined administration of vitamin C and vitamin E in amelioration of chronic lead hepatotoxicity. Egyp J Hosp Med 23:371–384

    CAS  Google Scholar 

  • Babaev VR, Whitesell RR, Li L, Linton MF, Fazio S, May JM (2011) Selective macrophage ascorbate deficiency suppresses early atherosclerosis. Free Radic Biol Med 50(1):27–36

    CAS  Google Scholar 

  • Bersényi A, Fekete SG, Szőcs Z, Berta E (2003) Effect of ingested heavy metals (cd, Pb and hg) on haematology and serum biochemistry in rabbits. Acta Vet Hung 51(3):297–304

    Google Scholar 

  • Boscolo P, Carmignani M (1986) Mechanisms of cardiovascular regulation in male rabbits chronically exposed to cadmium. Br J Ind Med 43(9):605–610

    CAS  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308

    CAS  Google Scholar 

  • Bucolo G, David H (1973) Quantitative determination of serum triglycerides by the use of enzymes. Clini Chem 19(5):476–482

    CAS  Google Scholar 

  • Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA, Tsatsakis AM, Schweitzer A, Wallace D (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501

    Google Scholar 

  • Chan DY, Fry N, Waisberg M, Black WD, Hale BA (2004) Accumulation of dietary cadmium (cd) in rabbit tissues and excretions: a comparison of lettuce amended with soluble cd salt and lettuce with plant-incorporated cd. J Toxicol Environ Health 67:397–411

    CAS  Google Scholar 

  • Dar KK, Ali S, Ejaz M, Nasreen S, Ashraf N, Gillani SF, Shafi N, Safeer S, Khan MA, Andleeb S, Mughal TA (2019) In vivo induction of hepatocellular carcinoma by diethylnitrosoamine and pharmacological intervention in balb c mice using Bergenia ciliata extracts. Braz J Biol, 79(4):629–638

  • Du Preez HH, Steyn GJ (1992) A preliminary investigation of the concentration of selected metals in the tissues and organs of the tigerfish (Hydrocynusvittatus) from the Olifants River, Kruger national Park. South Africa Water S A 18(2):131–136

    Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human bio toxic effects. Int J PhysSci 2(5):112–118

    Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238(3):289–293

    CAS  Google Scholar 

  • El Okle OS, Lebda MA (2014) Could alpha-Lipoic acid protect against sub-chronic toxicity of heavy metals mixture in japanese quails? Life Sci J 11(12):907–917

    Google Scholar 

  • Falandysz J (1991) Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. Food Addit Contam 8(1):71–83

    CAS  Google Scholar 

  • Farina M, Brandão R, Lara FS, Soares FAA, Souza DO, Rocha JBT (2003) Mechanisms of the inhibitory effects of selenium and mercury on the activity of d-Aminolevulinatedehydratase from mouse liver, kidney and brain. Toxicol Lett 139(1):55–66

    CAS  Google Scholar 

  • Farina M, Aschner M, Rocha JBT (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256(2):405–417

    CAS  Google Scholar 

  • Gallagher CM, Meliker JR (2010) Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspec. 118(12):1676–1684

    CAS  Google Scholar 

  • Ghosh N, Bhattacharya S (1992) Thyrotoxicity of the chlorides of cadmium and mercury in rabbit. Biomed Environ Sci 5(3):236–240

    CAS  Google Scholar 

  • Glueck CJ, Bornovali S, Pranikoff J, Goldenberg N, Dharashivkar S, Wang P (2004) Metformin, preeclampsia, and pregnancy outcomes in women with polycystic ovary syndrome. Diabetic Med 21(8):829–836

    CAS  Google Scholar 

  • Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester F (2016) Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases 3(28):1–15

    Google Scholar 

  • Horiguchi H, Oguma E, Kayama F (2011) Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation, and insufficient erythropoietin production in rats. Toxicol Sci 122(1):198–210

    CAS  Google Scholar 

  • Massányi P, Toman R, Uhrín V, Renon P (1995) Distribution of cadmium in selected organs of rabbits after an acute and chronic administration. Ital J Food Sci 7:311–316

    Google Scholar 

  • Mughal TA, Saleem MZ, Ali S, Anwar KK, Bashir MM, Babar M, Khan MA (2019) Evaluation of hepatotoxicity of carbon tetrachloride and pharmacological intervention by vitamin E in balb c mice. Pak J Zool 51(2):755–761

    Google Scholar 

  • Grosicki A (2004) Influence of vitamin C on cadmium absorption and distribution in rats. J Trace Elem Med Biol 18:183–187

    CAS  Google Scholar 

  • Gupta AD, Das SN, Dhundasi SA, Das KK (2008) Effect of garlic (Allium sativum) on heavy metal (nickel II and chromium VI) induced alteration of serum lipid profile in male albino rats. Inter J Environ Res Public Health 5(3):147–151

    Google Scholar 

  • Hodis HN, Mack WJ, Sevanian A (2005) Antioxidant vitamin supplementation and cardiovascular disease. In Preventive Nutrition: Humana Press 4(2): 245–277

  • Houston MC (2014) The role of mercury in cardiovascular disease. J Cardiovasc Dis Diagn 2:1–8

    Google Scholar 

  • Hussain SA, Kareem MA, Rasool SN, Al Omar SY, Saleh A, Al-Fwuaires MA, Daddam JR, Devi KL (2018) Trace element determination and cardioprotection of terminalia pallida fruit ethanolic extract in isoproterenol induced myocardial infarcted rats by ICP-MS. Biol Trace Elem Res 181(1):112–221

    Google Scholar 

  • Hussain S, Ali S, Mumtaz S, Shakir HA, Ahmad F, Tahir HM, Ulhaq M, Khan MA, Zahid MT (2020) Dose and duration-dependent toxicological evaluation of lead acetate in chicks. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08016-8

  • Imed M, Fatima H, Hamid K (2008) Protective effects of selenium (se) and zinc (Zn) on cadmium (cd) toxicity in the liver and kidney of the rat: histology and cd accumulation. Food and ChemToxicol 46(11):3522–3527

    Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72 

  • Josthna P, Geetharathan T, Sujatha P, Deepika G (2012) Accumulation of lead and cadmium in the organs and tissues of rabbits. Int J Pharm Life Sci 3(12):2186–2189

    CAS  Google Scholar 

  • Kaur S, Sharma S (2015) Assessment of biochemical alterations induced by acute and chronic doses of cadmium in albino mice. Asian J Pharmacol Toxicol 03(07):1–4

    Google Scholar 

  • Khan R, Ali S, Mumtaz S, Andleeb S, Ulhaq M, Tahir HM, Khan MKA, Khan MA, Shakir HA (2019) Toxicological effects of toxic metals (cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollu Res 26:16727–16741

    CAS  Google Scholar 

  • Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K et al (2014) Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutr 6:1194–1208

    Google Scholar 

  • Kulka M (2016) A review of paraoxonase 1 properties and diagnostic applications. Pol J Vet Sci 19:225–232

    CAS  Google Scholar 

  • Kuliczkowski W, Jołda-Mydłowska B, Kobusiak-Prokopowicz M, Antonowicz-Juchniewicz J, Kosmala W (2004) Effect of heavy metal ions on function of vascular endothelium in patients with ischemic heart disease. Pol Arch Med Wewn 111(6):679–685

    CAS  Google Scholar 

  • Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Drisko JA, Lee KL (2012) Design of the trial to assess chelation therapy (TACT). Amer Heart J 163(1):7–12

    Google Scholar 

  • Lass A, Sohal RS (2000) Effect of Coezyme Q1o and alpha-tocopherol content of mitochondria on production of superoxide anion radicals. FASEB J 14:87–94

    CAS  Google Scholar 

  • Lim KM, Kim S, Noh JY, Kim K, Jang WH, Bae ON, Chung SM, Chung JH (2010) Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease. Environ Health Perspect 118(7):928–935

    CAS  Google Scholar 

  • Lin YS, Ginsberg G, Lin JW, Sonawane B (2014) Mercury exposure and omega-3 fatty acid intake in relation to renal function in the US population. Int J Hyg Environ Health 217(4–5):465–472

    CAS  Google Scholar 

  • Lin TJ, Huang YL, Chang JS, Liu KT, Yen MC, Chen FW, Shih YL, Jao JC, Huang PC, Yeh IJ (2018) Optimal dosage and early intervention of L-ascorbic acid inhibiting K2Cr2O7-induced renal tubular cell damage. J Trace Elem Med Biol 48:1–7

    CAS  Google Scholar 

  • Mackness M, Mackness B (2004) Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Radic Biol Med 37(9):1317–1323

  • Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann ClinBiochem 43(4):257–268

    CAS  Google Scholar 

  • Massanyi PN, Lukac J, Slivkova J, Kovacik AV, Makarevich P, Chrenek R, Toman Z, Forgacs Z, Somosy R, Stawarz GF (2007) Mercury induced alterations in rat kidneys and testes in vivo. J Environ Sci Health 42(7):865–870

    CAS  Google Scholar 

  • Mazerik JN, Mikkilineni H, Kuppusamy VA, Steinhour E, Peltz A, Marsh CB, Kuppusamy P, Parinandi NL (2007) Mercury activates phospholipase A2 and induces formation of arachidonic acid metabolites in vascular endothelial cells. Toxicol Mechan Methods 17(9):541–557

    CAS  Google Scholar 

  • Messner B, Bernhard D (2010) Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. Biometals 23(5):811–822

    CAS  Google Scholar 

  • Mumtaz S, Ali S, Khan R, Andleeb S, Ulhaq M, Khan MAKhan MA, Shakir HA (2019) The protective role of ascorbic acid in the hepatotoxicity of cadmium and mercury in rabbits. Environ Sci Pollut Res 26(14):14087–14096

    CAS  Google Scholar 

  • Mumtaz S, Ali S, Khan R, Shakir HA, Tahir HM, Mumtaz S, Saiqa Andleeb S (2020) Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. Environmental Science and Pollution Research 27(9):8953–8964

  • Murugavel P, Pari (2007) Diallyl tetrasulfide protects cadmium-induced alterations in lipids and plasma lipoproteins in rats. Nutr Res 27:356–361

    CAS  Google Scholar 

  • Neathery MW, Miller WJ (1975) Metabolism and toxicity of cadmium, mercury, and lead in animals: a review. J Dairy Sci 58(12):1767–1781

    CAS  Google Scholar 

  • Okubo N, Hombrouck C, Fornes P, Cosson C, Samii K, Mazoit JX, Edouard A (2000) Cardiac troponin I and myocardial contusion in the rabbit. Anesthesiology: J Amr Soc of Anesthesiol 93(3):811–817

    CAS  Google Scholar 

  • Oriquat GA, Saleem TH, Naik RR, Moussa SZ, Al-Gindy RM (2012) A sub-chronic toxicity study of mercuric chloride in the rat. Jordan J Biol Sci 5(2):141–146

    Google Scholar 

  • Park KC, Gaze DC, Collinson PO, Marber MS (2017) Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 113(14):1708–1718

    CAS  Google Scholar 

  • Payliss BJ, Hassanin M, Prenner EJ (2015) The structural and functional effects of hg (II) and cd (II) on lipid model systems and human erythrocytes: a review. Chem Physic Lipd 193:36–51

    CAS  Google Scholar 

  • Pogwizd SM, Bers DM (2008) Rabbit models of heart disease. Drug Discov Today Dis Model 5(3):185–193

    Google Scholar 

  • Prabu SM, Renugadevi J, Shagirtha K (2013) In vivo and in vitro antioxidative efficacy of naringenin on cadmium -induced toxicity in rats. Research & Reviews: J Toxicol 3(3):112–117

    Google Scholar 

  • Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79(16):1493–1506

    CAS  Google Scholar 

  • Priscilla DH, Prince PS (2009) Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Int 179(2–3):118–124

    CAS  Google Scholar 

  • Quinn DL, Zarrow MX (1964) Inhibition of pregnant mare’s serum-induced ovulation in the immature rat. Endocrinol 74(3):309–313

  • Rana MN, Tangpong J, Rahman MM (2018) Theoxicodynamics of Lead, cadmium. Mercury and Arsenic-induced kidney toxicity and treatment strategy: A mini review Toxicology Reports 5:704–713

    CAS  Google Scholar 

  • Rehman H, Aziz AT, Saggu S, Vanwert A, Zidan LN, Saggu S (2017) Additive toxic effect of deltamethrin and cadmium on hepatic, hematological and immunological parameters in mice. ToxicolInd Health 2:1–8

    Google Scholar 

  • Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, Greenwald SE (2014) Tetrahydrocurcumin protects against cadmiuminduced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One 9:114–908

    Google Scholar 

  • Sato H, Preisler H, Raza A, Larson RB (1990) MDR1 transcript levels as an indication of resistant disease in acute myelogenous leukaemia. Brit J Haem 75(3):340–345

    CAS  Google Scholar 

  • Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochimica et BiophysicaActa Molecular Basis of Disease 1762(2):164–180

    CAS  Google Scholar 

  • Sellers RS, Pardo I, Hu G, Khan KN, Perry R, Markiewicz V, Rohde C, Colangelo J, Reagan W, Clarke D (2017) Inflammatory cell findings in the female rabbit heart and stress-associated exacerbation with handling and procedures used in nonclinical studies. Toxicol Pathol 45(3):416–426

    Google Scholar 

  • Sharifi AM, Darabi R, Akbarloo N, Larijani B, Khoshbaten A (2004) Investigation of circulatory and tissue ACE activity during development of lead-induced hypertension. Toxicol Lett 153(2):233–238

    CAS  Google Scholar 

  • Šimůnek T, Klimtová I, Kaplanová J, Mazurová Y, Adamcová M, Štěrba M, Hrdina R, Geršl V (2004) Rabbit model for in vivo study of anthracycline-induced heart failure and for the evaluation of protective agents. Eur J Heart Fail 6(4):377–387

    Google Scholar 

  • Talavera J, Giraldo A, Fernández-Del-Palacio MJ, García-Nicolás O, Seva J, Brooks G, & Moraleda JM (2015). An upgrade on the rabbit model of Anthracycline-induced cardiomyopathy: shorter protocol, reduced mortality, and higher incidence of overt dilated cardiomyopathy. Biomed res Intl, 465342

  • Taşdemir M, Çelikezen FÇ, Oto G, Özbey F (2019) The effects of pretreatment with lithium metaborate dihydrate on lipid peroxidation and Ca, Fe, mg, and K levels in serum of Wistar albino male rats exposed to cd. Environ Sci Pollut Res 30:1–0

  • Terasawa Y, Ladha Z, Leonard SW, Morrow JD, Newland D, Sanan D (2000) Increased atherosclerosis in hyper lipidemic mice deficient in alphatocopherol transfer protein and vitamin E. Proc. Natl Acad Sci U S A 28:830–834

    Google Scholar 

  • Varoni MV, Palomba D, Gianorso S, Anania V (2003) Cadmium as an environmental factor of hypertension in animals: new perspectives on mechanisms. Vet Res Commun 27:807–810

    Google Scholar 

  • Washington B, Williams S, Armstrong P, Mtshali C, Robinson JT, Myles EL (2006) Cadmium toxicity on arterioles vascular smooth muscle cells of spontaneously hypertensive rats. Int J Environ Res Public Health 3:323–328

    CAS  Google Scholar 

  • Watts SW, Chai S, Webb RC (1995) Lead acetate-induced contraction in rabbit mesenteric artery: interaction with calcium and protein kinase C. Toxicol 99(1–2):55–65

    CAS  Google Scholar 

  • Wiggers GA, Pecanha FM, Briones AM, Perez-Giron JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ Salaices M (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol heart circulatory Physiol(3)2: 122-131

  • Yildirim S, Celikezen FC, Oto G, Sengul E, Bulduk M, Tasdemir M, Cinar DA (2018) An investigation of protective effects of litium borate on blood and histopathological parameters in acute cadmium-induced rats. Biol Trace Elem Res 182(2):287–294

    CAS  Google Scholar 

  • Wilson RJ, Willis R, Gearry P, Skidmore E, Fleming C, Frampton A (2017) Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: associations with glycaemic control, obesity, and smoking. Nutr 9(9):997–102

    Google Scholar 

  • Winiarska-Mieczan A (2018) Protective effect of tea against lead and cadmium-induced oxidative stress—a review. Biometals 31:909–926

    CAS  Google Scholar 

  • Wojciechowski J, Kowalski W (1975) Cardiac and aortic lesions in chronic experimental poisoning with mercury vapors in rabbits. Pol Med Sci Hist Bull 15(2):255–260

    CAS  Google Scholar 

  • Yousef MI (2004) Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicol 199(1):47–57

    CAS  Google Scholar 

  • Zalups RK, Barfuss D (1990) Accumulation of inorganic mercury along the renal proximal tubule of the rabbit. Toxicol Appl Pharmacol 106(2):245–253

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Awan, Z., Mumtaz, S. et al. Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollut Res 27, 29266–29279 (2020). https://doi.org/10.1007/s11356-020-09011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09011-9

Keywords

Navigation