Skip to main content

Advertisement

Log in

Sublethal concentrations of triclosan elicited oxidative stress, DNA damage, and histological alterations in the liver and brain of adult zebrafish

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Triclosan (TCS), an antimicrobial agent, has been a pollutant of increasing concern owing to its potential health risk on humans and aquatic animals. The present study seeks to test the hypothesis that TCS could alter the oxidative stress-related parameters in the brain and liver, as well as eliciting DNA damage in hepatocytes of adult zebrafish. On the basis of the 96 h LC50 (398.9 μg/L), adult zebrafish were separately exposed to 50, 100, and 150 μg/L TCS for 30 days. The brain and liver tissues from adult zebrafish were excised and assayed for a suite of antioxidant parameters and oxidative stress biomarkers including DNA damage in the liver. The induced effect by TCS on the activity of acetylcholinesterase (AChE) was also analyzed in the brain. Results showed a significant decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the brain and liver of adult zebrafish. Also, the contents of the glutathione system (GSH and GSSH), as well as the activity of the glutathione reductase (GR), assayed in the liver, were reduced while the contents of malondialdehyde (MDA) were elevated in the liver. A comet assay revealed dose-dependent DNA damage in zebrafish hepatocytes. The 8-hydroxy-2′-deoxyguanosine (8-OHdG), MDA, and carbonyl protein contents in brain tissues significantly increased. Moreover, the AChE in the zebrafish brain was induced. Apparently, no obvious histological changes in brain tissues of zebrafish were observed compared with those of the control whereas atrophy and necrosis of hepatocytes and increased hepatic plate gap were observed in zebrafish hepatocytes after TCS exposure. The obtained results highlight that sublethal concentrations of TCS may be deleterious to the liver and brain of adult zebrafish upon subchronic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alak G, Yeltekin AC, Ucar A, Parlak V, Turkez H, Atamanalp M (2019) Borax alleviates copper-induced renal injury via inhibiting the DNA damage and apoptosis in rainbow trout. Biol Trace Elem Res 191(2):495–501

    CAS  Google Scholar 

  • Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190(2):360–365

    CAS  Google Scholar 

  • Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19(4):1044–1065

    CAS  Google Scholar 

  • Bever CS, Rand AA, Nording M, Taft D, Kalanetra KM, Mills DA, Breck MA, Smilowitz JT, German JB, Hammock BD (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467–473

    CAS  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in Zebra mussel hemocytes. Aquat Toxicol 91(3):238–244

    CAS  Google Scholar 

  • Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DG, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, Yatin S, Allen K, Aksenov M, Aksenova M, Carney J (1998) Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci 854:448–462

    CAS  Google Scholar 

  • Chen QL, Sun YL, Liu ZH, Li YW (2017) Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere 188:1–9

    Google Scholar 

  • Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183(1):195–196

    CAS  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31(4):285–311

    CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dörr AJ, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Escarrone ALV, Caldas SS, Primel EG, Martins SE, Nery LEM (2016) Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. Sci Total Environ 560-561:218–224

    CAS  Google Scholar 

  • EU (2016) Commision Implementin Decision (EU) 2016/110: not approving triclosan as an existing active substance for use in biocidal products for product tpye 1, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016D0110&from=EN Accessed date: 28 Jan, 2020

  • Falisse E, Voisin AS, Silvestre F (2017) Impacts of triclosan exposure on zebrafish early-life stage: toxicity and acclimation mechanisms. Aquat Toxicol 189:97–107

    Google Scholar 

  • Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33(2):79–97

    CAS  Google Scholar 

  • Food and Drug Administration, HHS (2016) Safety and effectiveness of health care antiseptics; topical antimicrobial drug products for over-the-counter human use. Fed Regist 81:61106–611530

    Google Scholar 

  • Food and Drug Administration, HHS (2017) Safety and effectiveness of health care antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule. Fed Regist 82:60474–60503

    Google Scholar 

  • Fort DJ, Mathis MB, Hanson W, Fort CE, Navarro LT, Peter R, Büche C, Unger S, Pawlowski S, Plautz JR (2011) Triclosan and thyroid-mediated metamorphosis in anurans: differentiating growth effects from thyroid-driven metamorphosis in Xenopus laevis. Toxicol Sci 121(2):292–302

    CAS  Google Scholar 

  • Gonzalez-Hunt CP, Wadhwa M, Sanders LH (2018) DNA damage by oxidative stress: measurement strategies for two genomes. Curr Opin Toxicol 7:87–94

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Hafeman D, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104(5):580–587

    CAS  Google Scholar 

  • Haggard DE, Noyes PD, Waters KM, Tanguay RL (2016) Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 308:32–45

    CAS  Google Scholar 

  • Hemalatha D, Nataraj B, Rangasamy B, Shobana C, Ramesh M (2019) DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. Fish Physiol Biochem 45(4):1463–1484

    CAS  Google Scholar 

  • Ho JCH, Hsiao CD, Kawakami K, Tse WKF (2016) Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos. Aquat Toxicol 173:29–35

    CAS  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67(2):167–179

    CAS  Google Scholar 

  • Ku P, Wu X, Nie X, Ou R, Wang L, Su T, Li Y (2014) Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comp Biochem Physiol C Toxicol Pharmacol 166:105–114

    CAS  Google Scholar 

  • Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36(9):1495–1502

    CAS  Google Scholar 

  • Lin D, Xie X, Zhou Q, Liu Y (2012) Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests. Environ Toxicol 27(7):385–392

    CAS  Google Scholar 

  • Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y (2014) The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). Environ Toxicol Chem 33(10):2344–2350

    CAS  Google Scholar 

  • Liu M, Ai W, Sun L, Fang F, Wang X, Chen S, Wang H (2019) Triclosan-induced liver injury in zebrafish (Danio rerio) via regulating MAPK/p53 signaling pathway. Comp Biochem Physiol C 222:108–117

    CAS  Google Scholar 

  • Manzo L, Castoldi AF, Coccini T, Rossi AD, Nicotera P, Costa LG (1995) Mechanisms of neurotoxicity: applications to human biomonitoring. Toxicol Lett 77(1–3):63–72

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    CAS  Google Scholar 

  • Montaseri H, Forbes PBC (2016) A review of monitoring methods for triclosan and its occurrence in aquatic environments. TrAC Trends Anal Chem 85(Pt C):221–231

    CAS  Google Scholar 

  • Ni H, Peng L, Gao X, Ji H, Ma J, Li Y, Jiang S (2019) Effects of maduramicin on adult zebrafish (Danio rerio): acute toxicity, tissue damage and oxidative stress. Ecotoxicol Environ Saf 168:249–259

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    CAS  Google Scholar 

  • Olaniyan L, Mkwetshana N, Okoh AI (2016) Triclosan in water, implications for human and environmental health. Springerplus 5:1639

    CAS  Google Scholar 

  • Oliveira R, Domingues I, Grisolia CK, Soares AMVM (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16(6):679–688

    CAS  Google Scholar 

  • Parenti CC, Ghilardi A, Torre CD, Mandelli M, Magni S, Giacco LD, Benelli A (2019) Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. Sci Total Environ 650(Pt 2):1752–1758

    CAS  Google Scholar 

  • Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau A-L, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S (2018) Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci 115(19):E4416–E4425

    CAS  Google Scholar 

  • Regoli F, Principato G (1995) Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat Toxicol 31(2):143–164

    CAS  Google Scholar 

  • Salierno JD, Lopes M, Rivera M (2016) Latent effects of early life stage exposure to triclosan on survival in fathead minnows, Pimephales promelas. J Environ Sci Health B Pest Food Contam Agricul Wastes 51(10):695–702

    CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    CAS  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522

    CAS  Google Scholar 

  • Wang CF, Tian Y (2015) Reproductive endocrine-disrupting effects of triclosan: population exposure, present evidence and potential mechanisms. Environ Pollut 206:195–201

    CAS  Google Scholar 

  • Wang LL, Liu T, Wang C, Zhao FQ, Zhang ZW, Yao HD, Xing HJ, Xu SW (2013) Effects of atrazine and chlorpyrifos on the production of nitric oxide and expression of inducible nitric oxide synthase in the brain of common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf 93:7–12

    CAS  Google Scholar 

  • Wang C, Huang W, Lin J, Fang F, Wang X, Wang H (2020) Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways. Chemosphere 241:125086

    CAS  Google Scholar 

  • Weatherly LM, Gosse JA (2017) Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev 20(8):447–469

    CAS  Google Scholar 

  • Weimann A, Broedbaek K, Henriksen T, Stovgaard ES, Poulsen HE (2012) Assays for urinary biomarkers of oxidatively damaged nucleic acids. Free Radic Res 46(4):531–540

    CAS  Google Scholar 

  • Wu M, Xu H, Shen Y, Qiu W, Yang M (2011) Oxidative stress in zebrafish embryos induced by short-term exposure to bisphenol a, nonylphenol, and their mixture. Environ Toxicol Chem 30(10):2335–2341

    CAS  Google Scholar 

  • Xu H, Shao X, Zhang Z, Zou Y, Chen Y, Han S, Wang S, Wu X, Yang L (2013) Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull Environ Contam Toxicol 91(6):635–639

    CAS  Google Scholar 

  • Yueh M-F, Tukey RH (2016) Triclosan: a widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol 56:251–272

    CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (Grants Nos. 21577051, 21876067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xu.

Additional information

Responsible Editor: Thomas Braunbeck

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyimah, E., Dong, X., Qiu, W. et al. Sublethal concentrations of triclosan elicited oxidative stress, DNA damage, and histological alterations in the liver and brain of adult zebrafish. Environ Sci Pollut Res 27, 17329–17338 (2020). https://doi.org/10.1007/s11356-020-08232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08232-2

Keywords

Navigation