Skip to main content
Log in

Removal of mercury(II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A sulfur-coated magnetic multi-walled carbon nanotube (S-M-MWCNT) composite was synthesized via coating a thin S layer on M-MWCNTs via a facile heating process. The prepared superparamagnetic adsorbent was employed for the uptake of mercury(II) (Hg(II)) from aqueous solutions and then magnetically separated without filtration or centrifugation steps. The adsorption of Hg(II) increased with increasing pH and reached a plateau value in the pH range 4.5–8.0. The adsorption kinetics followed the pseudo-second-order (PSO) model and equilibrium was reached within 3 h. The isotherm data obeyed the Langmuir isotherm model, and the maximum adsorption capacity of S-M-MWCNT adsorbent was acquired as 62.11 mg g−1. The adsorption of Hg(II) by the prepared composite is possibly controlled by the interaction between Hg(II) as a soft acid and elemental coated sulfur as a soft base. In addition, the coexist metal ions including copper(II) (Cu(II)), cadmium(II) (Cd(II)), cobalt(II) (Co(II)), lead(II) (Pb(II)), manganese(II) (Mn(II)), zinc(II) (Zn(II)), and chromium(III) (Cr(III)) had no significant effects on Hg(II) removal performance. It was found that the S-M-MWCNT composite could be reused after successive Hg(II) removal without any loss of adsorption capacity. Furthermore, the magnetic adsorbent holds high potential in the treatment of Hg-contaminated wastewater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad M, Manzoor K, Chaudhuri RR, Ikram S (2017) Thiocarbohydrazide cross-linked oxidized chitosan and poly (vinyl alcohol): a green framework as efficient Cu (II), Pb (II), and Hg (II) adsorbent. J Chem Eng Data 62:2044–2055

    CAS  Google Scholar 

  • Arvand M, Hassannezhad M (2014) Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng C 36:160–167

    CAS  Google Scholar 

  • Bai H, Zheng Y, Wang T, Peng N (2016) Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity. J Mater Chem A 4:14392–14399

    CAS  Google Scholar 

  • Bandaru NM, Reta N, Dalal H, Ellis AV, Shapter J, Voelcker NH (2013) Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater 261:534–541

    CAS  Google Scholar 

  • Blue LY, Jana P, Atwood DA (2010) Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89:1326–1330

    CAS  Google Scholar 

  • Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF (2008) Immobilization of mercury by pyrite (FeS2). Environ Pollut 156:504–514

    CAS  Google Scholar 

  • Chen K, Zhang Z, Xia K, Zhou X, Guo Y, Huang T (2019) Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury (II) from aqueous solution. ACS Omega 4:8568–8579

    CAS  Google Scholar 

  • Chen PH, Hsu C-F, Tsai DD-W, Lu Y-M, Huang W-J (2014) Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ Technol 35:1935–1944

    CAS  Google Scholar 

  • Chen S-R, Zhai Y-P, Xu G-L, Jiang Y-X, Zhao D-Y, Li J-T, Huang L, Sun S-G (2011) Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta 56:9549–9555

    CAS  Google Scholar 

  • Chiarle S, Ratto M, Rovatti M (2000) Mercury removal from water by ion exchange resins adsorption. Water Res 34:2971–2978

    CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41:8281–8287

    CAS  Google Scholar 

  • Deng S, Zhang G, Wang X, Zheng T, Wang P (2015) Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu (II) and Hg (II). Chem Eng J 276:349–357

    CAS  Google Scholar 

  • Deshpande AS, Khomane RB, Vaidya BK, Joshi RM, Harle AS, Kulkarni BD (2008) Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in W/O microemulsion. Nanoscale Res Lett 3:221

    CAS  Google Scholar 

  • Fayazi M, Afzali D, Taher M, Mostafavi A, Gupta V (2015a) Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: optimization study. J Mol Liq 212:675–685

    CAS  Google Scholar 

  • Fayazi M, Ghanei-Motlagh M, Taher MA (2015b) The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies. Mater Sci Semicond Process 40:35–43

    CAS  Google Scholar 

  • Fayazi M, Taher MA, Afzali D, Mostafavi A (2015c) Preparation of molecularly imprinted polymer coated magnetic multi-walled carbon nanotubes for selective removal of dibenzothiophene. Mater Sci Semicond Process 40:501–507

    CAS  Google Scholar 

  • Fayazi M, Taher MA, Afzali D, Mostafavi A (2015d) Removal of dibenzothiophene using activated carbon/γ-Fe2O3 nano-composite: kinetic and thermodynamic investigation of the removal process. Anal Bioanal Chem Res 2:73–84

    CAS  Google Scholar 

  • Fayazi M, Taher MA, Afzali D, Mostafavi A (2016a) Fe3O4 and MnO2 assembled on halloysite nanotubes: a highly efficient solid-phase extractant for electrochemical detection of mercury (II) ions. Sensors Actuators B Chem 228:1–9

    CAS  Google Scholar 

  • Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M (2016b) Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead (II) ions. Mater Sci Eng C 60:365–373

    CAS  Google Scholar 

  • Fayazi M, Ghanei-Motlagh M (2017) Synthesis and application of novel modified magnetic nanocomposite for solid phase extraction of thallium(I) ions. Anal Bioanal Chem Res 4:189–200

    CAS  Google Scholar 

  • Fayazi M, Afzali D, Ghanei-Motlagh R, Iraji A (2019) Synthesis of novel sepiolite–iron oxide–manganese dioxide nanocomposite and application for lead (II) removal from aqueous solutions. Environ Sci Pollut Res 26:18893–18903

    CAS  Google Scholar 

  • Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A (2019) Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod 230:783–793

    CAS  Google Scholar 

  • Gao X, Li J, Guan D, Yuan C (2014) A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency. ACS Appl Mater Interfaces 6:4154–4159

    CAS  Google Scholar 

  • Ghanei-Motlagh M, Fayazi M, Taher MA (2014) On the potentiometric response of mercury (II) membrane sensors based on symmetrical thiourea derivatives-experimental and theoretical approaches. Sensors Actuators B Chem 199:133–141

    CAS  Google Scholar 

  • Gupta A, Vidyarthi S, Sankararamakrishnan N (2014) Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater 274:132–144

    CAS  Google Scholar 

  • He F, Wang W, Moon J-W, Howe J, Pierce EM, Liang L (2012) Rapid removal of Hg (II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles. ACS Appl Mater Interfaces 4:4373–4379

    CAS  Google Scholar 

  • Henneberry YK, Kraus TE, Fleck JA, Krabbenhoft DP, Bachand PM, Horwath WR (2011) Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Sci Total Environ 409:631–637

    CAS  Google Scholar 

  • Huang L, Shuai Q (2019) Facile approach to prepare sulfur-functionalized magnetic amide-linked organic polymers for enhanced Hg (II) removal from water. ACS Sustain Chem Eng 7:9957–9965

    CAS  Google Scholar 

  • Huttenloch P, Roehl KE, Czurda K (2003) Use of copper shavings to remove mercury from contaminated groundwater or wastewater by amalgamation. Environ Sci Technol 37:4269–4273

    CAS  Google Scholar 

  • Jainae K, Sukpirom N, Fuangswasdi S, Unob F (2015) Adsorption of Hg (II) from aqueous solutions by thiol-functionalized polymer-coated magnetic particles. J Ind Eng Chem 23:273–278

    CAS  Google Scholar 

  • Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    CAS  Google Scholar 

  • Jung C, Heo J, Han J, Her N, Lee S-J, Oh J, Ryu J, Yoon Y (2013) Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71

    CAS  Google Scholar 

  • Kończyk J, Żarska S, Ciesielski W (2019) Adsorptive removal of Pb (II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: kinetic, mechanism, and thermodynamic studies. Colloids Surf A Physicochem Eng Asp 575:271–282

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids J Am Chem Soc 38:2221–2295

    CAS  Google Scholar 

  • Li R, Liu L, Yang F (2014) Removal of aqueous Hg (II) and Cr (VI) using phytic acid doped polyaniline/cellulose acetate composite membrane. J Hazard Mater 280:20–30

    CAS  Google Scholar 

  • Liu L, Ding L, Wu X, Deng F, Kang R, Luo X (2016) Enhancing the Hg (II) removal efficiency from real wastewater by novel thymine-grafted reduced graphene oxide complexes. Ind Eng Chem Res 55:6845–6853

    CAS  Google Scholar 

  • Luo F, Chen JL, Dang LL, Zhou WN, Lin HL, Li JQ, Liu SJ, Luo MB (2015) High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide-and hydroxyl-functionalized metal-organic framework. J Mater Chem A 3:9616–9620

    CAS  Google Scholar 

  • Mallakpour S, Abdolmaleki A, Borandeh S (2014) l-Phenylalanine amino acid functionalized multi walled carbon nanotube (MWCNT) as a reinforced filler for improving mechanical and morphological properties of poly (vinyl alcohol)/MWCNT composite. Prog Org Coat 77:1966–1971

    CAS  Google Scholar 

  • Mallakpour S, Behranvand V (2017a) Water sanitization by the elimination of Cd2+ using recycled PET/MWNT/LDH composite: morphology, thermal, kinetic, and isotherm studies. ACS Sustain Chem Eng 5:5746–5757

    CAS  Google Scholar 

  • Mallakpour S, Behranvand V (2017b) Sono-assisted preparation of bio-nanocomposite for removal of Pb2+ ions: study of morphology, thermal and wettability properties. Ultrason Sonochem 39:872–882

    CAS  Google Scholar 

  • Manohar D, Krishnan KA, Anirudhan T (2002) Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res 36:1609–1619

    CAS  Google Scholar 

  • Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater-a review. J Water Process Eng 7:244–265

    Google Scholar 

  • Moghaddam HK, Pakizeh M (2015) Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem 21:221–229

    CAS  Google Scholar 

  • Mustafa S, Dilara B, Nargis K, Naeem A, Shahida P (2002) Surface properties of the mixed oxides of iron and silica. Colloids Surf A Physicochem Eng Asp 205:273–282

    CAS  Google Scholar 

  • Nie Z-y, Liu H-c, Xia J-l, Zhu H-r, Ma C-y, Zheng L, Zhao Y-d, Qiu G-z (2014) Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans. Res Microbiol 165:639–646

    CAS  Google Scholar 

  • Pang L-j, Hu J-t, Zhang M-j, Yang C-g, Wu G-z (2018) An efficient and reusable quaternary ammonium fabric adsorbent prepared by radiation grafting for removal of Cr (VI) from wastewater. Environ Sci Pollut Res 25:11045–11053

    CAS  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  • Rao MM, Reddy DK, Venkateswarlu P, Seshaiah K (2009) Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J Environ Manag 90:634–643

    CAS  Google Scholar 

  • Reddy MLP, Francis T (2001) Recent advances in the solvent extraction of mercury (II) with calixarenes and crown ethers. Solvent Extr Ion Exch 19:839–863

    CAS  Google Scholar 

  • Salam MA, Mohamed RM (2013) Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chem Eng Res Des 91:1352–1360

    CAS  Google Scholar 

  • Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731

    CAS  Google Scholar 

  • Saman N, Johari K, Mat H (2013) Adsorption characteristics of sulfur-functionalized silica microspheres with respect to the removal of Hg (II) from aqueous solutions. Ind Eng Chem Res 53:1225–1233

    Google Scholar 

  • Shetty D, Boutros S, Eskhan A, De Lena AM, Skorjanc T, Asfari Z, Traboulsi H, Mazher J, Raya J, Banat F, Trabolsi A (2019) Thioether-crown-rich calix[4] arene porous polymer for highly efficient removal of mercury from water. ACS Appl Mater Interfaces 11:12898–12903

    CAS  Google Scholar 

  • Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) The removal of U (VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioact 105:40–47

    CAS  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    CAS  Google Scholar 

  • Tang W-W, Zeng G-M, Gong J-L, Liu Y, Wang X-Y, Liu Y-Y, Liu Z-F, Chen L, Zhang X-R, Tu D-Z (2012) Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211:470–478

    Google Scholar 

  • Thakur S, Das G, Raul PK, Karak N (2013) Green one-step approach to prepare sulfur/reduced graphene oxide nanohybrid for effective mercury ions removal. J Phys Chem C 117:7636–7642

    CAS  Google Scholar 

  • Tian S, Yin Y, Cao Z, Yue H, Yang S (2018) Sulfur grown around carbon nanotubes as a cathode material for Li/S battery. Ionics 24:33–41

    CAS  Google Scholar 

  • Trofimov BA, Sinegovskaya LM, Gusarova NK (2009) Vibrations of the S–S bond in elemental sulfur and organic polysulfides: a structural guide. J Sulfur Chem 30:518–554

    CAS  Google Scholar 

  • Vikrant K, Kim K-H (2018) Nanomaterials for the adsorptive treatment of Hg (II) ions from water. Chem Eng J 358:264–282

  • Vuković GD, Marinković AD, Čolić M, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157:238–248

    Google Scholar 

  • Wang J, Deng B, Wang X, Zheng J (2009) Adsorption of aqueous Hg (II) by sulfur-impregnated activated carbon. Environ Eng Sci 26:1693–1699

    CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    CAS  Google Scholar 

  • Yang J, Wu J-X, Lü Q-F, Lin T-T (2014) Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb (II) ions. ACS Sustain Chem Eng 2:1203–1211

    CAS  Google Scholar 

  • Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109–116

    CAS  Google Scholar 

  • Zeng H, Wang L, Zhang D, Yan P, Nie J, Sharma VK, Wang C (2019) Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem Eng J 358:253–263

    CAS  Google Scholar 

  • Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52

    CAS  Google Scholar 

  • Zhang F-S, Nriagu JO, Itoh H (2005) Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res 39:389–395

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Fayazi.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayazi, M. Removal of mercury(II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes. Environ Sci Pollut Res 27, 12270–12279 (2020). https://doi.org/10.1007/s11356-020-07843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07843-z

Keywords

Navigation