Skip to main content
Log in

Cell membrane damage induced by continuous stress of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa at different physiological stages

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Artemisinin sustained-release microspheres (ASMs) with long-term inhibition effects (> 40 days) on harmful freshwater bloom-forming cyanobacteria have been found in previous studies, but the inhibition mechanism is not completely clear. In the present study, we examined the growth effect of ASMs on Microcystis aeruginosa (M. aeruginosa) cells at different physiological stages. Growth experiments indicated that M. aeruginosa of different initial densities could be inhibited immediately and chlorophyll-a content both showed significant decreases following exposure of cyanobacteria to optimal dosage of ASMs for 20 days. The algicidal mechanism of ASMs was tested through a suite of physiological parameters (membrane permeability, antioxidant enzymes activity, and lipid peroxidation). The rise of cell membrane permeability indices (intracellular protein, nucleic acid contents, and conductivity) showed that the cellular membrane structure of M. aeruginosa was attacked by ASMs directly causing the leakage of cytoplasm. Antioxidant enzyme activity was a sensitive indicator of the impacts of ASMs which showed a significant downtrend after a few days. ASMs caused a great increase in •O2 and malondialdehyde (MDA) level of the algal cells which indicated the increase in lipid peroxidation of M. aeruginosa. Irreversible membrane damage induced by ASMs via the oxidation of ROS may be an important factor responsible for the algicidal mechanism of ASMs on M. aeruginosa cells. The application of ASMs might provide a new direction to control M. aeruginosa, especially before the exponential phase according to the optimal economy and inhibition effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H, Wyss SR, Scherz B, Skvaril F (1974) Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48(1):137–145

    CAS  Google Scholar 

  • Amano Y, Machida M (2012) Competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. under nitrogen-limited condition caused by dilution in eutrophic lake. J Appl Phycol 24:965–971

    CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    CAS  Google Scholar 

  • Bashford CL, Alder GM, Menestrina G, Micklem KJ, Murphy JJ, Pasternak CA (1986) Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. A common mechanism blocked by divalent cations. J Biol Chem 261:9300–9308

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  Google Scholar 

  • Blackhall ML, Coombes JS, Fassett R (2004) The relationship between antioxidant supplements and oxidative stress in renal transplant recipients: a review. ASAIO J 50:451

    CAS  Google Scholar 

  • Boyer JN, Kelble CR, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol Indic 9:S56–S67

    CAS  Google Scholar 

  • Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135:144–151

    CAS  Google Scholar 

  • Castro HP, Teixeira PM, Kirby R (2010) Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol 82:87–94

    Google Scholar 

  • Chang X, Eigemann F, Hilt S (2012) Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa. Harmful Algae 19:76–84

    CAS  Google Scholar 

  • Chen YW, Chen KN, Hu YH (2006) Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. J Lake Sci 18:550–552

    CAS  Google Scholar 

  • Chen L, Wang Y, Shi L, Zhao J, Wang W (2019) Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. Environ Sci Pollut Res 26:22389–22399

    CAS  Google Scholar 

  • Daniel JU, Blahoslav MÁ (2011) Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415–1422

    Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201–207

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2010) Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem 20:160–170

    Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    CAS  Google Scholar 

  • Gao YN, Ge FJ, Zhang LP, He Y, Lu ZY, Zhang YY, Liu BY, Zhou QH, Wu ZB (2017) Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine. Chemosphere 174:732–738

    CAS  Google Scholar 

  • Gumbo JR, Cloete TE, Zyl GJJV, Sommerville JEM (2014) The viability assessment of Microcystis aeruginosa cells after co-culturing with Bacillus mycoides B16 using flow cytometry. Phys Chem Earth, Parts A/B/C 72–75:24–33

    Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265

    Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–725S

    CAS  Google Scholar 

  • Hong Y, Hu HY, Li FM (2008a) Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicol Environ Saf 71:527–534

    CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Li FM (2008b) Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed ( Phragmites communis ). J Plant Physiol 165:1264–1273

    CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269

    CAS  Google Scholar 

  • Huang H, Xiao X, Lin F, Grossart HP, Nie Z, Sun L, Xu C, Shi J (2016) Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: preparation, release dynamics and inhibitory effects. Water Res 95:113–123

    CAS  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    CAS  Google Scholar 

  • Hullebusch EV, Deluchat V, Chazal PM, Baudu M (2002) Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: part II. Case of copper sulfate. Environ Pollut 120:627–634

    Google Scholar 

  • Kinley CM, Iwinski KJ, Hendrikse M, Geer TD, Jr RJ (2017) Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: implications for microcystin-LR release. Ecotoxicol Environ Saf 145:591

    CAS  Google Scholar 

  • Kong CH, Wang P, Zhang CX, Zhang MX, Hu F (2010) Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res 46:290–295

    Google Scholar 

  • Kujawa M (2010) Natural toxins: characterization, pharmacology and therapeutics. Proceedings of the 9th World Congress on Animals, Plant and Microbial Toxins. Stillwater, Oklahoma, August 1988. Herausgegeben von C. L. Ownby und G. V. Odell. 211 Seiten, zahlr. Abb. und Tab. Mol Nutr Food Res 34:568–568

    Google Scholar 

  • Lehman PW, Boyer G, Hall C, Waller S, Gehrts K (2005) Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541:87–99

    CAS  Google Scholar 

  • Li J, Liu Y, Zhang P, Zeng G, Cai X, Liu S, Yin Y, Hu X, Hu X, Tan X (2016) Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J Environ Sci (China) 43:40–47

    Google Scholar 

  • Lv L, Zhang X, Qiao J (2018) Flocculation of low algae concentration water using polydiallyldimethylammonium chloride coupled with polysilicate aluminum ferrite. Environ Technol 39(1):83–90

    CAS  Google Scholar 

  • Marshall JA, Newman S (2002) Differences in photoprotective pigment production between Japanese and Australian strains of Chattonella marina (Raphidophyceae). J Exp Mar Biol Ecol 272:13–27

    CAS  Google Scholar 

  • Matés JM, Pérez-Gómez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Google Scholar 

  • Michalak AM, Anderson EJ, Dmitry B, Steven B, Bosch NS, Bridgeman TB, Chaffin JD, Kyunghwa C, Rem C, Irem D (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci U S A 110:6448–6452

    CAS  Google Scholar 

  • Ni LX, Acharya K, Hao XY, Li SY (2012) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88:1051–1057

    CAS  Google Scholar 

  • Ni LX, Acharya K, Ren GX, Li SY, Li YP, Li Y (2013) Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae. Chemosphere 91:608–615

    CAS  Google Scholar 

  • Ni LX, Li D, Hu S, Wang P, Li S, Li Y, Li Y, Acharya K (2015) Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release. Environ Sci Pollut Res Int 22:18637–18644

    CAS  Google Scholar 

  • Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M, Castranova V, Guo NL (2012) Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 75:112–128

    CAS  Google Scholar 

  • Qian H, Xu X, Chen W, Jiang H, Jin Y, Liu W, Fu Z (2009) Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere 75:368–375

    CAS  Google Scholar 

  • Quan-Young LI, Espinoza-Avalos J (2006) Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scleractinia) when competing with mixed turf algae. Limnol Oceanogr 51:1159–1166

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    CAS  Google Scholar 

  • Rouzic BL, Thiébaut G, Brient L (2016) Selective growth inhibition of cyanobacteria species ( Planktothrix agardhii ) by a riparian tree leaf extract. Ecol Eng 97:74–78

    Google Scholar 

  • Sarah J, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119

    Google Scholar 

  • Sarvajeet Singh G, Narendra T (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Google Scholar 

  • Shao J, Wu Z, Yu G, Peng X, Li R (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928

    CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720

    CAS  Google Scholar 

  • Sun XX, Choi JK, Kim EK (2004) A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. J Exp Mar Biol Ecol 304:35–49

    CAS  Google Scholar 

  • Wang R, Hua M, Yu Y, Zhang M, Xian QM, Yin DQ (2016) Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147:264–271

    CAS  Google Scholar 

  • Wang R, Xue Q, Wang J, Tan L, Zhang Q, Zhao Y, Anderson DM (2017) Effects of an allelochemical in Phaeodactylum tricornutum filtrate on Heterosigma akashiwo: morphological, physiological and growth effects. Chemosphere 186:527

    CAS  Google Scholar 

  • Woo IS, Rhee IK, Park HD (2000) Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl Environ Microbiol 66:2243

    CAS  Google Scholar 

  • Wu X et al (2013) Effects of allelochemical extracted from water lettuce (Pistia;stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environ Sci Pollut Res 20:8192–8201

    CAS  Google Scholar 

  • Wu X, Wu H, Ye J, Zhong B (2015) Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environ Sci Pollut Res 22:18994–19001

    CAS  Google Scholar 

  • Xi HU, Liu Y, Zeng G, Xinjiang HU, Wang Y, Zeng X (2014) Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905. Ecotoxicol Environ Saf 105:121–127

    Google Scholar 

  • Xu Y, Ji Y, Ou M, Wang Y, Jia J (2007) Study of Microcystis aeruginosa inhibition by electrochemical method. Biochem Eng J 36:215–220

    CAS  Google Scholar 

  • Yamaguchi H, Suzuki S, Osana Y, Kawachi M (2018) Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa. Journal of Genomics 6:30

    Google Scholar 

  • Yan R, Wu Y, Ji H, Fang Y, Kerr PG, Yang L (2011) The decoction of Radix Astragali inhibits the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf 74:1006–1010

    CAS  Google Scholar 

  • Yan Z, Yan K, He X, Liu Y, Zhang J, Lopez Torres O, Guo R, Chen J (2017) The impact assessment of anticancer drug imatinib on the feeding behavior of rotifers with an integrated perspective: exposure, post-exposure and re-exposure. Chemosphere 185:423–430

    CAS  Google Scholar 

  • Yang CY, Liu SJ, Zhou SW, Wu HF, Yu JB, Xia CH (2011) Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum. Pestic Biochem Physiol 99:93–103

    Google Scholar 

  • Yu X, Cai G, Wang H, Hu Z, Zheng W, Lei X, Zhu X, Chen Y, Chen Q, Din H (2017) Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. J Hazard Mater 341:138–149

    CAS  Google Scholar 

  • Zhang TT, Zheng CY, Hu W, Xu WW, Wang HF (2010) The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa. J Appl Phycol 22:71–77

    Google Scholar 

  • Zhang J, Xie Z, Wang Z (2016a) Oxidative stress responses and toxin accumulation in the freshwater snail Radix swinhoei (Gastropoda, Pulmonata) exposed to microcystin-LR. Environ Sci Pollut Res 23:1353–1361

    Google Scholar 

  • Zhang S, Xia W, Yang X, Zhang T (2016b) Inhibition effect of aquaculture water of Salvinia natans( L.) All.on Microcystis aeruginosa PCC7806. J Hyg Res 45:81

    Google Scholar 

  • Zhang H, Dan Y, Adams CD, Shi H, Ma Y, Eichholz T (2017) Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis Aeruginosa during oxidation. Chemosphere 181:562–568

    CAS  Google Scholar 

  • Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte ( Myriophyllum spicatum ) and its secretion. Aquat Toxicol 98:196–203

    CAS  Google Scholar 

Download references

Funding

This work was supported jointly by the Key Program of the National Natural Science Foundation of China (No. 91647206), the National Natural Science Foundation (Grant No. 51779079, 51579073, 51979137), the National Science Fund for Creative Research Groups of China (No. 51421006), the Natural Science Foundation of Jiangsu Province (Grant No. BK20181313), the Program for Changjiang Scholars and Innovative Research Team at Hohai University (No. IRT13061), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Water Conservancy Science and Technology Project (2018037), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyin Li.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Yue, F., Zhang, J. et al. Cell membrane damage induced by continuous stress of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa at different physiological stages. Environ Sci Pollut Res 27, 12624–12634 (2020). https://doi.org/10.1007/s11356-020-07813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07813-5

Keywords

Navigation