Skip to main content

Advertisement

Log in

Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerobic CH4 oxidation coupled to denitrification (AME-D) can not only mitigate the emission of greenhouse gas (e.g., CH4) to the atmosphere, but also reduce NO3 and/or NO2 and alleviate nitrogen pollution. The effects of O2 tension on the community and functional gene expression of methanotrophs and denitrifiers were investigated in this study. Although higher CH4 oxidation occurred in the AME-D system with an initial O2 concentration of 21% (i.e., the O2-sufficient condition), more NO3-N was removed at the initial O2 concentration of 10% (i.e., the O2-limited environment). Type I methanotrophs, including Methylocaldum, Methylobacter, Methylococcus, Methylomonas, and Methylomicrobium, and type II methanotrophs, including Methylocystis and Methylosinus, dominated in the AME-D systems. Compared with type II methanotrophs, type I methanotrophs were more abundant in the AME-D systems. Proteobacteria and Actinobacteria were the main denitrifiers in the AME-D systems, and their compositions varied with the O2 tension. Quantitative PCR of the pmoA, nirS, and 16S rRNA genes showed that methanotrophs and denitrifiers were the main microorganisms in the AME-D systems, accounting for 46.4% and 24.1% in the O2-limited environment, respectively. However, the relative transcripts of the functional genes including pmoA, mmoX, nirK, nirS, and norZ were all less than 1%, especially the functional genes involved in denitrification under the O2-sufficient condition, likely due to the majority of the denitrifiers being dormant or even nonviable. These findings indicated that an optimal O2 concentration should be used to optimize the activity and functional gene expression of aerobic methanotrophs and denitrifiers in AME-D systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alrashed W, Lee J, Park J, Rittmann BE, Tang Y, Neufeld JD, Lee HS (2018) Hypoxic methane oxidation coupled to denitrification in a membrane biofilm. Chem Eng J 348:745–753

    CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20rd edn. American Public Health Association, Washington DC

    Google Scholar 

  • Blanco Y, Rivas LA, Gonzalez-Toril E, Ruiz-Bermejo M, Moreno-Paz M, Parro V, Palacin A, Aguilera A, Puente-Sanchez F (2019) Environmental parameters, and not phylogeny, determine the composition of extracellular polymeric substances in microbial mats from extreme environments. Sci Total Environ 650:384–393

    CAS  Google Scholar 

  • Braker G, Tiedje JM (2003) Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 69:3476–3483

    CAS  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    CAS  Google Scholar 

  • Breitenbeck GA, Bremner JM (1989) Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fertil Soils 7:219–224

    Google Scholar 

  • Bussmann I, Rahalkar M, Schink B (2006) Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56:331–344

    CAS  Google Scholar 

  • Cao SB, Du R, Zhang HY, Peng YZ (2019) Understanding the granulation of partial denitrification sludge for nitrite production. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124389

  • Chowdhury TR, Mitsch WJ, Dick RP (2014) Seasonal methanotrophy across a hydrological gradient in a freshwater wetland. Ecol Eng 72:116–124

    Google Scholar 

  • Costa C, Dijkema C, Friedrich M, García-Encina P, Fernández-Polanco F, Stams AJM (2000) Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl Microbiol Biotechnol 53:754–762

    CAS  Google Scholar 

  • Costello A, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  Google Scholar 

  • Crossman ZM, Abraham F, Evershed RP (2004) Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ Sci Technol 38:1359–1367

    CAS  Google Scholar 

  • Cuba RMF, Duarte IC, Saavedra NK, Varesche MBA, Foresti E (2011) Denitrification coupled with methane anoxic oxidation and microbial community involved identification. Braz Arch Biol Techn 54:173–182

    CAS  Google Scholar 

  • Daelman MRJ, Van Eynde T, van Loosdrecht MCM, Volcke EIP (2014) Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs. Water Res 66:308–319

    CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    CAS  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267

    CAS  Google Scholar 

  • Fernández LA, Perotti EB, Sagardoy MA, Gomez MA (2008) Denitrification activity of Bradyrhizobium sp. isolated from Argentine soybean cultivated soils. World J Microbiol Biotechnol 24:2577–2585

    Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    CAS  Google Scholar 

  • Gui MY, Chen Q, Ni JQ (2017) Effect of NaCl on aerobic denitrification by strain Achromobacter sp GAD-3. Appl Biochem Biotech 101:5139–5147

    CAS  Google Scholar 

  • Guggenheim C, Brand A, Burgmann H, Sigg L, Wehrli B (2019) Aerobic methane oxidation under copper scarcity in a stratified lake. Sci Rep. https://doi.org/10.1016/j.chemosphere.2019.124389

  • Guo LJ, Zhao B, An Q, Tian M (2016) Characteristics of a novel aerobic denitrifying bacterium, Enterobacter cloacae strain HNR. Appl Biochem Biotech 178:947–959

    CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Mol Biol Rev 60:439–471

    CAS  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM, Leigh MB (2012) Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ Microbiol 14:1403–1419

    CAS  Google Scholar 

  • He R, Su Y, Ma RC, Zhuang SL (2018) Characterization of toluene metabolism by methanotroph and its effect on methane oxidation. Environ Sci Pollut Res 25:16816–16824

    CAS  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679

    CAS  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Mcrobiol Lett 132:203–208

    CAS  Google Scholar 

  • Hu HW, Chen D, He JZ (2015) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39:729–749

    CAS  Google Scholar 

  • Jin M, Shen ZQ, Li JW (2006) of a novel and effective bacteria. FEMS

  • Joo HM, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4. J Biosci Bioeng 100:184–191

    CAS  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GAN, Raftery D, Fu Y, Bringel F (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:1–7

    Google Scholar 

  • Kim M, Jeong SY, Yoon SJ, Cho SJ, Kim YH, Kim MJ, Ryu EY, Lee SJ (2008) Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. J Biosci Bioeng 106:498–502

    CAS  Google Scholar 

  • Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp nov type strain FJG1. Environ Microbiol 17:3219–3232

    CAS  Google Scholar 

  • Kloos K, Mergel A, Rosch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Funct Plant Biol 28:991–998

    Google Scholar 

  • Knief C, Kolb S, Bodelier PLE, Lipski A, Dunfield PF (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol 8:321–333

    CAS  Google Scholar 

  • Kong D, Shen H, Huang Y, Mi H (2004) PCR hot-start using duplex primers. Biotechnol Lett 26:277–280

    CAS  Google Scholar 

  • Kong JY, Bai Y, Su Y, Yao YJ, He R (2014) Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol Biochem 78:118–127

    CAS  Google Scholar 

  • Kreft JU, Wimpenny JWT (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141

    CAS  Google Scholar 

  • Leak DJ, Dalton H (1986) Growth yields of methanotrophs. 2. A theoretical analysis. Appl Microbiol Biotechnol 23:477–481

    CAS  Google Scholar 

  • Lee J, Alrashed W, Engel K, Yoo K, Neufeld JD, Lee HS (2019) Methane-based denitrification kinetics and syntrophy in a membrane biofilm reactor at low methane pressure. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.133818

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    CAS  Google Scholar 

  • Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Environ Sci Technol 33:237–273

    CAS  Google Scholar 

  • Lu HJ, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254

    CAS  Google Scholar 

  • Ma L, Lin H, Xie XB, Dai M, Zhang Y (2019) Major role of ammonia-oxidizing bacteria in N2O production in the Pearl River estuary. Biogeosciences 16:4765–4781

    Google Scholar 

  • McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    CAS  Google Scholar 

  • Michotey V, Mejean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571

    CAS  Google Scholar 

  • Miguez CB, Bourque D, Sealy JA, Greer CW, Groleau D (1997) Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb Ecol 33:21–31

    CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738

    CAS  Google Scholar 

  • Osaka T, Shirotani K, Yoshie S, Tsuneda S (2008) Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res 42:3709–3718

    CAS  Google Scholar 

  • Paulin MM, Nicolaisen MH, Jacobsen CS, Gimsing AL, Sorensen J, BaeLum J (2013) Improving griffith’s protocol for co-extraction of microbial DNA and RNA in adsorptive soils. Soil Biol Biochem 63:37–49

    CAS  Google Scholar 

  • Ren YX, Yang L, Liang X (2014) The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour Technol 171:1–9

    CAS  Google Scholar 

  • Rhee GY, Fuhs GW (1978) Wastewater denitrification with one-carbon compounds as energy source. J Water Pollut Control Fed 50:2111–2119

    CAS  Google Scholar 

  • Rissanen AJ, Ojala A, Fred T, Toivonen J, Tiirola M (2017) Methylophilaceae and Hyphomicrobium as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants. J Ind Microbiol Biotechnol 44:35–47

    CAS  Google Scholar 

  • Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration1. Limnol Oceanogr 21:357–364

    CAS  Google Scholar 

  • Sánchez C, Minamisawa K (2018) Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiol Lett 365:1–7

    Google Scholar 

  • Sazinsky MH, Lippard SJ (2015) Methane monooxygenase: functionalizing methane at iron and copper. Met Ions Life Sci 15:205–256

    CAS  Google Scholar 

  • Semrau JD, Dispirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    CAS  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    CAS  Google Scholar 

  • Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294

    CAS  Google Scholar 

  • Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492

    CAS  Google Scholar 

  • Thalasso F, Vallecillo A, Garcia-Encina P, Fdz-Polanco F (1997) The use of methane as a sole carbon source for wastewater denitrification. Water Res 31:55–60

    CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) 2018 Inventory of U.S. greenhouse gas emissions and sinks: 1990–2016. EPA 430-R-18-003

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. Nov. sp. nov. an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Micr 61:2456–2463

    CAS  Google Scholar 

  • Waki M, Suzuki K, Osada T, Tanaka Y (2005) Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresour Technol 96:921–927

    CAS  Google Scholar 

  • Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R (2011) Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manag 31:864–870

    CAS  Google Scholar 

  • Wei XM, Su Y, Zhang HT, Chen M, He R (2015) Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. Waste Manag 42:118–127

    Google Scholar 

  • Werner M, Kayser R (1991) Denitrification with biogas as external carbon source. Water Sci Technol 23:701–708

    CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    CAS  Google Scholar 

  • Yang YY, Chen JF, Tong TL, Li BQ, He T, Liu Y, Xie SG (2019) Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. Sci Total Environ 662:863–872

    CAS  Google Scholar 

  • Yao S, Ni JR, Ma T, Li C (2013) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp HA2. Bioresour Technol 139C:80–86

    Google Scholar 

  • Zhu J, Wang Q, Yuan MD, Tan GYA, Sun FQ, Wang C, Wu WX, Lee PH (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215

    CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China with Grants No. 91851109, 41671245, 41911530193, and 41371012 and the Natural Science Foundation of Zhejiang province with Grant No. LZ20E080002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo He.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YX., Ma, RC., Wang, J. et al. Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems. Environ Sci Pollut Res 27, 12280–12292 (2020). https://doi.org/10.1007/s11356-020-07767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07767-8

Keywords

Navigation