Skip to main content
Log in

Quantification of Tl (I) and Tl (III) based on microcolumn separation through ICP-MS in river sediment pore water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Thallium (Tl) is a typical toxic element, whose biological effects and geochemical behavior are closely related with its chemical speciation in the environment. In this context, the objective of the present study was to develope an effective method for separation of Tl (I) and Tl (III) based on solid-phase extraction (SPE) using anion exchange resin AG1-X8 as a sorbent and ICP-MS measurement. In this proposed method, Tl (I) and Tl (III) could be separated by selective adsorption of Tl (III)-DTPA in the resin, while Tl (III) was eluted by the solution mixed with HCl and SO2. The validity of this method was confirmed by assays of standard solutions of Tl (I) and Tl (III), as well as with spike of contaminated samples. The present study results revealed that higher concentration of Tl (I) (245.48 μg/l) and Tl (III) (20.92 μg/l) had been found near the acid mine drainage (AMD) sample of sediment pore water. The results revealed that Tl (I) of 61.47 μg/l and Tl (III) of 9.73 μg/l were present in the river water contaminated by acid mine drainage. This thallium speciation analysis implied that the dominant Tl (I) species in the river water studied might be due to the weathering of sulfide mineral–bearing rocks, mining, and smelting activities in the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Najar H, Schulz R, Romheld V (2003) Plant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction. J Plant Soil 249(1):97–105

    CAS  Google Scholar 

  • Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS (2009) Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ Monit Assess 148:291–305

    CAS  Google Scholar 

  • Bajza Z, Vrcek IV (2001) Water quality analysis of mixtures obtained from tannery waste effluents. Ecotoxicol Environ Saf 50(1):15–18

    CAS  Google Scholar 

  • Baker RGA, Rehkamper M, Hinkley TK, Nielsen SG, Toutain JP (2009) Investigation of thallium fluxes from subaerial volcanism – implications for the present and past mass balance of thallium in the oceans. Geochim Cosmochim Acta 73:6340–6359

    CAS  Google Scholar 

  • Batley GE, Florence TM (1975) Determination of thallium in natural waters by anodic stripping voltammetry. J Electroanal Chem Interfacial Electrochem 61:205–211

    CAS  Google Scholar 

  • Biagioni CM, D’Orazio G, Lepore FD, Acapito S, Vezzoni (2017) Thallium-rich rust scales in drinkable water distribution systems: a case study from northern Tuscany, Italy. Sci Total Environ 588:491–501

    Google Scholar 

  • Campanella BM, Onor A, D’Ulivo A, Giannecchini M, D’Orazio R, Petrini E, Bramanti E (2016) Human exposure to thallium through tap water: a study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci Total Environ 548–549:33–42

    Google Scholar 

  • Campanella B, Casiot C, Onor M, Perotti M, Petrini R, Bramanti E (2017) Thallium release from acid mine drainages: speciation in river and tap water from Valdicastello mining district (northwest Tuscany). Talanta 171:255–261

    CAS  Google Scholar 

  • Casiot C, Egal M, Bruneel O, Verma N, Parmentier M, Elbaz-Poulichet FO (2011) Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoules mine (Southern France). J Environ Sci Technol 45:2056–2064

    CAS  Google Scholar 

  • Cobelo-García AM, Filella P, Croot C, Frazzoli G, Du Laing N, Ospina-Alvarez S, Rauch P, Salaun J, Schäfer S (2015) Zimmermann COST action TD1407: network on technology-critical elements (NOTICE)-from environmental processes to human health threats. Environ Sci Pollut Res 22(19):15188–15194

    Google Scholar 

  • Coetzee PP, Fischer JL, Hu M (2003) Simultaneous separation and determination of Tl (I) and Tl (III) by IC-ICP-OES and IC-ICP-MS. Water SA 29(1):17–22

    CAS  Google Scholar 

  • Couture P, Fortin C, Hare L, Lapointe D, Pitre D (2011) A critical review of thallium in aquatic ecosystems. INRS, Centre Eau, Terre et Environnement

  • Das AKM, Dutta ML, Cervera M (2007) Determination of thallium in water samples. Microchem J 86(1):2–8

    CAS  Google Scholar 

  • Dorazio M, Biagioni C, Dini A, Vezzoni S (2016) Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: constraints for their origin and environmental concerns. Mineral Deposita:1–21

  • Escudero LB, Wuilloud RG, Olsina RA (2013) Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion pairing liquid-liquid microextraction and inductively coupled plasma mass spectrometry. J Hazard Mater 244-245:380–386

    CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Jia YL, Xiao TF, Zhou GZ, Ning ZP (2013) Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): soil-plant transfer and influencing factors. Sci Total Environ 451:140–147

    Google Scholar 

  • Jia Y, Xiao TF, Sun J, Yang F, Baveye PC (2018) Microcolumn-based speciation analysis of thallium in soil and green cabbage. Sci Total Environ 630:146–153

    CAS  Google Scholar 

  • Kaplan DI, Mattigod SV (1998) Aqueous geochemistry of thallium. In: Nriagu JO (ed) Thallium in the environment. New York, Wiley, pp 15–29

    Google Scholar 

  • Karbowska B, Zembrzuski W, Jakubowska M, Wojtkowiak T, Pasieczna A, Lukaszewski Z (2014) Translocation and mobility of thallium from zinc-lead ores. J Geochem Explor 143:127–135

    CAS  Google Scholar 

  • Karlsson U, Düker A, Karlsson S (2006) Separation and quantification of Tl(I) and Tl (III) in freshwater samples. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:1155–1167

    CAS  Google Scholar 

  • Kersten M, Xiao TF, Kreissig K, Brett A, Coles BJ, Rehkämper M (2014) Tracing anthropogenic thallium in soil using stable isotopes. J Environ Sci Technol 48:9030–9036

    CAS  Google Scholar 

  • Krasnodebska-Ostrega B, Asztemborska M, Golimowski J, Strusinska K (2008) Determination of thallium forms in plant extracts by anion exchange chromatography with inductively coupled plasma mass spectrometry detection (IC-ICP-MS). J Analyt Atomic Spectrom 23(12):1632–1635

    CAS  Google Scholar 

  • Krasnodębska-Ostręga B, Pałdyna J, Wawrzyńska M, Stryjewska E (2011) Indirect anodic stripping voltammetric determination of Tl (I) and Tl (III) in the Baltic seawater samples enriched in thallium species. Electroanalysis 23:605–610

  • Krasnodȩbska-Ostrȩga B, Sadowska M, Piotrowska K, Wojda M (2013) Thallium (III) determination in the Baltic seawater samples by ICP MS after preconcentration on SGX C18 modified with DDTC. Talanta 112:73–79

    Google Scholar 

  • Lan CH, Lin TS (2005) Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicol Environ Saf 61:432.539

    Google Scholar 

  • Li H, Li X, Long J, Li K, Chen Y, Jiang J et al (2019) Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique. J Clean Prod 221:89–97

    CAS  Google Scholar 

  • Lin TS, Nriagu JO (1999) Thallium speciation in the Great Lakes. J Environ Sci Technol 33(19):3394–3397

    CAS  Google Scholar 

  • Lis J, Pasieczna A, Karbowska B, Zembrzuski W, Lukaszewski Z (2003) Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environ Sci Technol 37:4569–4572

    CAS  Google Scholar 

  • Meeravali NN, Jiang SJ (2008) Ultra-trace speciation analysis of thallium in environmental water samples by inductively coupled plasma mass spectrometry after a novel sequential mixed-micelle cloud point extraction. J Anal At Spectrom 23:555–560

    CAS  Google Scholar 

  • Nielsen SG, Wasylenki LE, Rehkamper M, Peacock CL, Xue ZC, Moon EM (2013) Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Et Cosmoch Acta 117:252–265

    CAS  Google Scholar 

  • Nolan A, Schaumloffel D, Lombi E, Ouerdane L, Łobinski R, McLaughlin M (2004) Determination of Tl-(I) and Tl-(III) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia. J Anal At Spectrom 19(6):757–761

    CAS  Google Scholar 

  • Nowicka A, Krasnodębska-Ostręga B, Wrzosek B, Jastrzębska M, Sadowska M, Maćkiewicz M, Stojek Z (2014) Detection of oxidative damage of synthetic oligonucleotides caused by Tl (III) complexes. Electroanalysis 26:340–348

    CAS  Google Scholar 

  • Ospina-Alvarez N, Burakiewicz P, Sadowska M, Krasnodebska-Ostrega B (2015) TlI and TlIII presence in suspended particulate matter: speciation analysis of thallium in wastewater. Environ Chem 12(3):374–379

    CAS  Google Scholar 

  • Pavlickova J, Zbiral J, Smatanova M, Habarta P, Houserova P, Kuban V (2006) Uptake of thallium from artificially contaminated soils by kale (Brassica oleracea L. var. acephala). J Plant Soil Environ 52(12):544–549

    CAS  Google Scholar 

  • Peacock CL, Moon EM (2012) Oxidative scavenging of thallium by birnessite: the explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim Cosmochim Acta 84:297–313

    CAS  Google Scholar 

  • Petrini R, Cidu R, Slejko FF (2016) Thallium contamination in the Raibl mine site stream drainage system (eastern Alps, Italy). Mine Water Environ 35:55–63

    CAS  Google Scholar 

  • Ralph L, Twiss MR (2002) Comparative toxicity of thallium(I), thallium (III), and cadmium (II) to the unicellular alga Chlorella isolated from Lake Erie. Bull Environ Contam Toxicol 68:261–268

    CAS  Google Scholar 

  • Sadowska M, Biaduń E, Krasnodębska-Ostręga B (2016) Stability of Tl (III) in the context of speciation analysis of thallium in plants. Chemosphere 144:1216–1223

    CAS  Google Scholar 

  • Scheckel KG, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. J Plant Soil 290(1–2):51–60

    CAS  Google Scholar 

  • Smith RM, Martell AE (1989) Stability constants 6. Plenum Press, New York

    Google Scholar 

  • Stafilov T, Sajn R, Jasminka A (2013) Distribution of arsenic, antimony, and thallium in the soil in Kavadarci and its surroundings, Republic of Macedonia. Soil Sediment Contam 22:105–118

    CAS  Google Scholar 

  • Twining BS, Twiss MR, Fisher NS (2003) Oxidation of thallium by freshwater plankton communities. Environ Sci Technol 37:2720–2726

    CAS  Google Scholar 

  • Twiss MR, Twining BS, Fisher NS (2004) Bioconcentration of inorganic and organic thallium by freshwater phytoplankton. Environ Toxicol Chem 23:968–973

    CAS  Google Scholar 

  • Vanek A, Chrastny V, Komarek M, Galuskova I, Drahota P, Grygar T et al (2010a) Thallium dynamics in contrasting light sandy soils-soil vulnerability assessment to anthropogenic contamination. J Hazard Mater 173:717–723

    CAS  Google Scholar 

  • Vanek A, Komarek M, Chrastny V, Becka D, Mihaljevic M, Sebek O, Panuskova G, Schusterova Z (2010b) Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils--agro-environmental implications. J Hazard Mater 182(1–3):303–308

    CAS  Google Scholar 

  • Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn AC, Mangold S, Steininger R, Göttlicher J (2015) Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environ Sci Technol 49(9):5390–5398

    CAS  Google Scholar 

  • Xiao TF, Guha J, Boyle D, Liu CQ, Zheng BS, Wilson G, Rouleau A, Chen J (2004) Naturally occurring thallium: a hidden geoenvironmental health hazard? Environ Int 30:501–507

    CAS  Google Scholar 

  • Xiao TF, Yang F, Li SH, Zheng BS, Ning ZP (2012) Thallium pollution in China: a geoenvironmental perspective. Sci Total Environ 421:51–58

    Google Scholar 

  • Xiao Q, Rasool A, Xiao TF, Baveye PC (2018) A modified method of separating Tl(I) and Tl (III) in aqueous samples using solid phase extraction. Chem Cent J 12:132

    CAS  Google Scholar 

  • Xie WW, Tremaine PR (1999) Thermodynamics of aqueous diethylenetriamine pentaacetic acid (DTPA) systems: apparent and paetual molar heat capacities and volumes of aqueous H2DTPA3-, DTPA5-, CuDTPA3-, and Cu2DTPA from 10 to 55 °C. J Solut Chem 28:291–325

    CAS  Google Scholar 

  • Xiong Y (2009) The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environ Chem 6(5):441–451

    CAS  Google Scholar 

  • Xu H, Luo Y, Wang P, Zhu J, Yang Z, Liu Z (2019) Removal of thallium in water/wastewater: a review. Water Res 165:114981

    CAS  Google Scholar 

Download references

Acknowledgments

Constructive comments and helpful suggestions from the reviewers are acknowledged, which have helped improve this manuscript considerably.

Funding

This work was financially supported by the National Natural Science Foundation of China [grant numbers 41830753, U1612442, and 41673138].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangfu Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, A., Xiao, T., Ali, S. et al. Quantification of Tl (I) and Tl (III) based on microcolumn separation through ICP-MS in river sediment pore water. Environ Sci Pollut Res 27, 9686–9696 (2020). https://doi.org/10.1007/s11356-019-07553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07553-1

Keywords

Navigation