Skip to main content

Advertisement

Log in

Effects of root exudates on the activation and remediation of cadmium ion in contaminated soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To screen out plants with hyperaccumulation of heavy metals and explore the effects of root exudates on the phytoremediation in contaminated soils. The germination rates of five plants including Lolium perenne L. (L. perenne), Sorghum sudanense (Piper) Stapf. (S. sudanense), Pennisetum alopecuroides (L.) Spreng. (P. alopecuroides), Medicago sativa L. (M. sativa), and Trifolium repens L. (T. repens) in different concentrations of cadmium ion solution (0–100 mg/kg) were determined. The growth adaptability of these five plants under conditions of contaminated soils with the above cadmium ion concentrations was also evaluated. S. sudanense and P. alopecuroides had higher germination rates and better growth than the three other plants and were selected as the latter experimental varieties. The activation amounts of cadmium ion in soils were measured using AAS in the presence of three types of root secretions (citric acid, glycine, and maltose) with different concentrations (10–500 mmol/L). The activation amounts decrease in the following order: citric acid > glycine > maltose. The effect of these three root exudates on the removal of cadmium-contaminated soils in combination with S. sudanense and P. alopecuroides was also tested. For S. sudanense and P. alopecuroides, the maximum biomass and removal rate reaches the maximum at 100 mmol/L of citric acid. Conversely, low concentrations (approximately 10–50 mmol/L) of glycine and maltose are more effective for plant growth and phytoremediation. The addition of citric acid at 100 mmol/L and approximately 10–50 mmol/L of glycine and maltose can effectively promote the transfer of cadmium ion from roots to leaves and the accumulation of cadmium ion in leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153

    Article  Google Scholar 

  • Chen J, Shafi M, Wang Y, Wu J, Ye Z, Liu C, Zhong B, Guo H, He L, Liu D (2016) Organic acid compounds in root exudation of Moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res 23(20):20977–20984

    Article  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56(1):55–114

    Article  CAS  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H et al (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489–500

    Article  CAS  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13(7):1790–1799

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Hou Y, Liu X, Zhang X, Chen X, Tao K, Chen X et al (2015) Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ Sci Pollut Res 22(22):17780–17788

    Article  CAS  Google Scholar 

  • Hou Y, Liu X, Zhang X, Chen X, Tao K (2016) Effects of key components of Scirpus triqueter root exudates on fractions and bioavailability of pyrene–lead co-contaminated soils. Int J Environ Sci Technol 13(3):887–896

    Article  CAS  Google Scholar 

  • Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang XE (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102(23):11034–11038

    Article  CAS  Google Scholar 

  • Huang G, Guo G, Yao S, Zhang N, Hu H (2016) Organic acids, amino acids compositions in the root exudates and cu-accumulation in castor (Ricinus communis L.) under cu stress. Int J Phytoremediation 18(1):33–40

    Article  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q et al (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1–3):914–926

    Article  CAS  Google Scholar 

  • Jien SH, Lin YH (2018) Proteins in xylem exudates from rapeseed plants (Brassica napus L.) play a crucial role in cadmium phytoremediation. CLEAN Soil Air Water 46(10):1700164

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50(3):265–276

    Article  CAS  Google Scholar 

  • Muratova A, Golubev S, Wittenmayer L, Dmitrieva T, Bondarenkova A, Hirche F et al (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66(3):514–521

    Article  CAS  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  Google Scholar 

  • Wang K, Zhang J, Zhu Z, Huang H, Li T, He Z et al (2012) Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. J Soils Sediments 12(7):1089–1099

    Article  CAS  Google Scholar 

  • Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mater 162(1):50–56

    Article  CAS  Google Scholar 

  • Willscher S, Jablonski L, Fona Z, Rahmi R, Wittig J (2017) Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy 168:153–158

    Article  CAS  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7:755

    Google Scholar 

  • Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139(1):167–175

    Article  CAS  Google Scholar 

  • Balseiro-Romero M, Kidd PS, Monterroso C (2014) Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Int J Phytoremediation 16(7–8):824–839

    Article  CAS  Google Scholar 

Download references

Funding

The authors were given financial support from the “13th five-year” National Major Science and Technology Project of China (No. 2016ZX05040-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Mei.

Additional information

Responsible Editor: Philipp Gariguess

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, Z., Li, S. et al. Effects of root exudates on the activation and remediation of cadmium ion in contaminated soils. Environ Sci Pollut Res 27, 2926–2934 (2020). https://doi.org/10.1007/s11356-019-07263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07263-8

Keywords

Navigation