Skip to main content
Log in

Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The remediation of nonaqueous phase liquids (NAPLs) enhanced by surfactant and nanoparticles (NP) has been investigated in numerous studies. However, the role of NP-assisted surfactants in the dissolution process is still not well discussed. Besides, there is a lack of empirical dissolution models considering the effects of initial residual saturation Strap, NAPL distribution, and surfactant concentration in NAPL-aqueous phase systems. In this work, micromodel experiments are conducted to quantify mass transfer coefficients for different injected aqueous phases including deionized water, SDS surfactant solutions, and NP-assisted solutions with different levels of concentrations and flow rates. Observations reveal that silica nanoparticles (SNP) can significantly enhance interphase mass transfer, while SDS surfactant reduces the mass transfer coefficient. In addition, Strap and intrinsic interfacial area ai, as an indicator of dense nonaqueous phase liquids (DNAPL) distribution, influence the interphase mass transfer. The ai is also independent of DNAPL saturation SNAPL except for SNAPL < 7% when ganglia breakup occurs. Based on these observations, new empirical dissolution models are proposed in the presence and the absence of SDS surfactant and SNP in which ai, Strap, and surfactant concentrations are introduced as new parameters. The evaluated mass transfer rate coefficients using the proposed models show a significant improvement compared to available empirical models. The finding of this study might be attractive for application in field-scale simulations of surfactant-enhanced aquifer remediation (SEAR) and NP-assisted methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abriola LM (1989) Modeling multiphase migration of organic chemicals in groundwater systems--a review and assessment. Environ Health Perspect 83:117

    CAS  Google Scholar 

  • Agaoglu B, Copty NK, Scheytt T, Hinkelmann R (2015) Interphase mass transfer between fluids in subsurface formations: a review. Adv Water Resour 79:162–194

    Article  CAS  Google Scholar 

  • Al-Gharbi MS, Blunt MJ (2005) Dynamic network modeling of two-phase drainage in porous media. Phys Rev E 71:016308

    Article  CAS  Google Scholar 

  • Ashrafmansouri S-S, Esfahany MN (2014) Mass transfer in nanofluids: a review. Int J Therm Sci 82:84–99

    Article  CAS  Google Scholar 

  • Aydin-Sarikurt D, Dokou Z, Copty NK, Karatzas GP (2016) Experimental investigation and numerical modeling of enhanced DNAPL solubilization in saturated porous media. Water Air Soil Pollut 227:441

    Article  CAS  Google Scholar 

  • Babaei M, Copty NK (2019) Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation. J Contam Hydrol 221:69–81

    Article  CAS  Google Scholar 

  • Baran JRJ, Pope GA, Wade WH, Weerasooriya V (1994) Phase behavior of water/perchloroethylene/anionic surfactant systems. Langmuir 10:1146–1150

    Article  CAS  Google Scholar 

  • Beck AJ, Jones KC (1995) Kinetic constraints on theIn-situ remediation of soils contaminated with organic chemicals. Environ Sci Pollut Res 2:244–252

    Article  CAS  Google Scholar 

  • Cheema C, Worth CJ (2003) Analysis of pore-scale nonaqueous phase liquid dissolution in etched silicon pore networks. Water Resour Res:39. https://doi.org/10.1029/2002WR001643

  • Corapcioglu MY, Yoon S, Chowdhury S (2009) Pore-scale analysis of NAPL blob dissolution and mobilization in porous media. Transp Porous Media 79:419–442. https://doi.org/10.1007/s11242-008-9331-8

    Article  Google Scholar 

  • Fan X, He L, Lu H-W, Li J (2015) Design of optimal groundwater remediation systems under flexible environmental-standard constraints. Environ Sci Pollut Res 22:1008–1019

    Article  CAS  Google Scholar 

  • Fang X, Xuan Y, Li Q (2009) Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett 95:203108

    Article  CAS  Google Scholar 

  • Friedlander SK (1957) Mass and heat transfer to single spheres and cylinders at low Reynolds numbers. AICHE J 3:43–48

    Article  CAS  Google Scholar 

  • Geller JT, Hunt JR (1993) Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour Res 29:833–845

    Article  CAS  Google Scholar 

  • Gerardi C, Cory D, Buongiorno J et al (2009) Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett 95:253104

    Article  CAS  Google Scholar 

  • Grimberg SJ, Nagel J, Aitken MD (1995) Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. Environ Sci Technol 29:1480–1487

    Article  CAS  Google Scholar 

  • Imhoff PT, Jaffe PR, Pinder GF (1994) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30:307–320

    Article  CAS  Google Scholar 

  • Ji W, Brusseau ML (1998) A general mathematical model for chemical-enhanced flushing of soil contaminated by organic compounds. Water Resour Res 34:1635–1648

    Article  CAS  Google Scholar 

  • Khasi S, Ramezanzadeh M, Ghazanfari MH (2019) Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media. J Contam Hydrol:103565. https://doi.org/10.1016/J.JCONHYD.2019.103565

    Article  CAS  Google Scholar 

  • Kokkinaki A, O’Carroll DM, Werth CJ, Sleep BE (2013) An evaluation of Sherwood–Gilland models for NAPL dissolution and their relationship to soil properties. J Contam Hydrol 155:87–98

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Bhattacharya P, Phelan PE, Prasher RS (2006) Enhanced mass transport in nanofluids. Nano Lett 6:419–423

    Article  CAS  Google Scholar 

  • Luciano A, Mancini G, Torretta V, Viotti P (2018) An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area. Environ Sci Pollut Res 25:33992–34004

    Article  Google Scholar 

  • Maji R, Sudicky EA (2008) Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. J Contam Hydrol 102:105–119

    Article  CAS  Google Scholar 

  • Malk V, Tejera EB, Simpanen S et al (2014) NAPL migration and ecotoxicity of conventional and renewable fuels in accidental spill scenarios. Environ Sci Pollut Res 21:9861–9876

    Article  CAS  Google Scholar 

  • Mason AR, Kueper BH (1996) Numerical simulation of surfactant flooding to remove pooled DNAPL from porous media. Environ Sci Technol 30:3205–3215

    Article  CAS  Google Scholar 

  • Mayer AS, Hassanizadeh SM (2005) Soil and groundwater contamination: nonaqueous phase liquids–principles and observations. American Geophysical Union

  • Mayer AS, Zhong L, Pope GA (1999) Measurement of mass-transfer rates for surfactant-enhanced solubilization of nonaqueous phase liquids. Environ Sci Technol 33:2965–2972

    Article  CAS  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ (2006) Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Groundw Monit Remediat 26:73–84

    Article  CAS  Google Scholar 

  • Meinardus HW, Dwarakanath V, Ewing J, Hirasaki GJ, Jackson RE, Jin M, Ginn JS, Londergan JT, Miller CA, Pope GA (2002) Performance assessment of NAPL remediation in heterogeneous alluvium. J Contam Hydrol 54:173–193

    Article  CAS  Google Scholar 

  • Miller CT, Poirier-McNeil MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26:2783–2796

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nambi IM, Powers SE (2003) Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 39(2)

  • Ozturk S, Hassan YA, Ugaz VM (2010) Interfacial complexation explains anomalous diffusion in nanofluids. Nano Lett 10:665–671

    Article  CAS  Google Scholar 

  • Parker JC, Katyal AK, Kaluarachchi JJ et al (1991) Modeling multiphase organic chemical transport in soils and groundwater. US Environ Prot Agency, Washington, DC Rep EPA/600/2-91/042

    Google Scholar 

  • Portois C, Essouayed E, Annable MD, Guiserix N, Joubert A, Atteia O (2018) Field demonstration of foam injection to confine a chlorinated solvent source zone. J Contam Hydrol 214:16–23

    Article  CAS  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ (1992) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady state mass transfer rates. Water Resour Res 28:2691–2705

    Article  CAS  Google Scholar 

  • Ramezanzadeh M, Khasi S, Ghazanfari MH (2019) Simulating imbibition process using interacting capillary bundle model with corner flow: the role of capillary morphology. J Pet Sci Eng 176:62–73

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu HL, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP (2005) Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. Environ Sci Technol 39:1791–1801

    Article  CAS  Google Scholar 

  • Roote D (1997) In situ flushing. GWRTAC, Technology Overview Report. TO-97-02, Pittsburgh

  • Sarikurt DA, Gokdemir C, Copty NK (2017) Sherwood correlation for dissolution of pooled NAPL in porous media. J Contam Hydrol 206:67–74

    Article  CAS  Google Scholar 

  • Saripalli KP, Kim H, Rao PSC, Annable MD (1997) Measurement of specific fluid− fluid interfacial areas of immiscible fluids in porous media. Environ Sci Technol 31:932–936

    Article  CAS  Google Scholar 

  • Silva JAK, Martin WA, Johnson JL, McCray JE (2019) Evaluating air-water and NAPL-water interfacial adsorption and retention of perfluorocarboxylic acids within the vadose zone. J Contam Hydrol 223:103472

    Article  CAS  Google Scholar 

  • Veilleux J, Coulombe S (2010) A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. J Appl Phys 108:104316

    Article  CAS  Google Scholar 

  • Yoon H, Werth CJ, Valocchi AJ, Oostrom M (2008) Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction. J Contam Hydrol 100:58–71

    Article  CAS  Google Scholar 

  • Zhong L, Mayer A, Glass RJ (2001) Visualization of surfactant-enhanced nonaqueous phase liquid mobilization and solubilization in a two-dimensional micromodel. Water Resour Res 37:523–537

    Article  Google Scholar 

  • Zoller U, Reznik A (2006) In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers. Environ Sci Pollut Res 13:392

    Article  CAS  Google Scholar 

Download references

Nomenclature

ai Intrinsic interfacial area (cm2/cm3)

An Total area occupied by NAPL in target area of the micromodel (cm2)

as Specific interfacial area (cm2/cm3)

At Total target area in the micromodel (cm2 )

C NAPL concentration in aqueous phase (mg/L)

Cs Equilibrium solubility of NAPL in aqueous phase (mg/L)

Dm Molecular diffusivity in aqueous phase (cm2/s)

hm Average depth of the micromodel (cm)

k Mass transfer coefficient (cm/min)

K Mass transfer rate coefficient (1/min)

Lc Characteristic length of heterogeneous micromodel (cm)

NCa Capillary number

P Total interfacial perimeter (cm)

Re Reynolds number

SNAPL NAPL saturation

Strap Initial residual saturation

Sh Sherwood number

Sh Modified Sherwood number

t Temporal time after phase displacement (min)

α1 A correlation parameter in the proposed dissolution modeling in Eq. (6)

α2 A correlation parameter in the proposed dissolution modeling in Eq. (6)

β A correlation parameter in the proposed dissolution modeling in Eq. (6)

γ1 A correlation parameter in the proposed dissolution modeling in Eq. (8)

γ2 A correlation parameter in the proposed dissolution modeling in Eq. (8)

λ A correlation parameter in the proposed dissolution modeling in Eq. (8)

ρn NAPL density (g/cm3)

φ Porosity of the micromodel

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Ghazanfari.

Additional information

Responsible Editor: Marcus Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanzadeh, M., Khasi, S., Fatemi, M. et al. Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models. Environ Sci Pollut Res 27, 2658–2669 (2020). https://doi.org/10.1007/s11356-019-07194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07194-4

Keywords

Navigation