Skip to main content

Advertisement

Log in

A blessing for the Yangtze River: optimization of Chinese regional policy planning for water yield and purification in the Three Gorges Reservoir Area

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Land use/land cover (LULC) changes impact the structure and functioning of ecosystems, which consequently influences the provisioning of a range of ecosystem services (ES). There is a growing consensus regarding the merit of integrating the evaluation of ES into regional policy planning. The Yangtze River is the world’s third longest and supports more than 6% of its population. However, assessing the potential impacts of different resource management policies upon ES is complicated in the Yangtze basin. To remedy this, here we designed a scenario analysis-based approach that used remotely sensed data and GIS (geographic information system) to analyze the relationships between ES (i.e., water flow regulation, water purification) and policies envisioned to improve human welfare in the Chongqing municipality, in the upper reaches of the Three Gorges Reservoir Area (TGRA) in the Yangtze basin. This watershed area has high population density and suffers from severe flood hazard and critical pollution issues. The GEOMOD modeling technique was used to predict LULC changes according to policy planning alternatives, producing scenarios by 2050 for the TGRA watershed. The GIS-based ES model (InVEST model) was developed as a tool to inform the decision-making process with the intention of aligning conservation measures with economic development. We examine policy effectiveness by comparing three scenarios for 2050: scenario-1 maintains the current policy, with no considerations of ES; scenario-2 integrates ES into policy planning; and scenario-3 integrates ES into policy planning considering the needs of local people. Our scenario-based LULC change analysis showed that the land with large increases in water flow regulation (i.e., values ≤–3000 × 103 m3 km-2) were scattered over the entire study area, while phosphorus reduction (i.e., values ≤ –30 kg km-2) were located mainly along rivers in all scenarios. Scenario-2 and scenario-3 are based on policies aiming at enhancing ES provisioning; for these, the projected ecological risks of water pollution are significantly reduced (39.97% and 37.58%, respectively). Total net changes of the investigated ES under scenario-2 or scenario-3 were almost double that occurring under scenario-1. Although scenario-2 and scenario-3 showed a near-equal total net change, water purification under scenario-2 was the greatest relative to forest expansion. However, scenario-3 offered the best future environmental development scenario, as it accounted for the demand and supply characteristics of water yield and purification in different regions. The water purification service made the greatest contribution to positive and negative effects (26%–47% and -7%, respectively) on ES provisioning. Linking water purification service to policy planning would effectively improve the overall ES. These scenario forecasting results will help the Three Gorges Dam to gain more ecological benefits via improvements to water flow regulation and the effective alleviation of degraded water quality in heavily populated regions in the Yangtze basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Press, Rome

    Google Scholar 

  • Balvanera P, Daily GC, Ehrlich PR, Ricketts TH, Bailey SA, Kark C, Pereira H (2001) Conserving biodiversity and ecosystem services. Science 291:2047

    CAS  Google Scholar 

  • Borjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels-resource efficiency and environmental performance including direct land use changes. J Clean Prod 19:108–120

    Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press, San Diego

    Google Scholar 

  • Chen J, Wu X, Finlayson BL, Webber M, Wei T, Li M, Chen Z (2014) Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. J Hydrol 513:403–412

    Google Scholar 

  • Cheng H, Hu Y, Zhao J (2009) Meeting China’s water shortage crisis: current practices and challenges. Environ Sci Technol 43(2):240–244

    CAS  Google Scholar 

  • Chongqing Water Agency (2003) Chongqing water resources bulletin. Chongqing Water Conservancy Information Center (http://www.cqwater.gov.cn/)

  • Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world's ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Daily GC (ed) (1997) Nature's services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272

    Google Scholar 

  • Eastman JR (2012) IDRISI Selva. Clark University, Worcester

    Google Scholar 

  • Estoque RC, Murayama YJ (2012) Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Appl Geogr 35(1–2):316–326

    Google Scholar 

  • Fan J (2014) Influence of MRP and WRP of south-to-north water diversion on water resources in water source areas and countermeasures. Yangtz River 45(7):23–26 (in Chinese)

    Google Scholar 

  • Gong W, Xu DR, Caine ED (2016) Challenges arising from China's two-child policy. Lancet 387(10025):1274–1274

    Google Scholar 

  • Grêt-Regamey A, Brunner SH, Kienast F (2012) Mountain ecosystem services: who cares? Mt Res Dev 32(S1):S23–S34

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Hewlett JD (1982) Principles of forest hydrology. University of Georgia Press, Athens

    Google Scholar 

  • Hunter LM, Manuel DJGG, Stevenson M, Karish KS, Toth R, Edwards TC, Lilieholm RJ, Cablk M (2003) Population and land use change in the California Mojave: natural habitat implications of alternative futures. Popul Res Policy Rev 22(4):373–397

    Google Scholar 

  • Koop SHA, Koetsier L, Doornhof A, Reinstra O, Leeuwen CJV, Brouwer S, Dieperink C, Driessen PPJ (2017) Assessing the governance capacity of cities to address challenges of water, waste, and climate change. Water Resour Manag 31(11):3427–3443

    Google Scholar 

  • Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci U S A 111(20):7492–7497

    CAS  Google Scholar 

  • Leitáo AB, Miller J, Ahern J, McGarigal K (2006) Measuring landscapes. a planner’s handbook. Island Press, Washington, DC

    Google Scholar 

  • Liu JG, Li SX, Ouyang ZY, Tam C, Chen XD (2008) Ecological and socioeconomic effects of China's policies for ecosystem services. Proc Natl Acad Sci U S A 105(28):9477–9482

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being. Synthesis. Island Press, Washington, DC

    Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Google Scholar 

  • Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Xiao Y, Rao EM, Jiang L, Lu F, Wang XK, Yang GB, Gong SH, Wu BF, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science 352(6292):1455–1459

    CAS  Google Scholar 

  • Paudel S, Yuan F (2012) Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int J Appl Earth Obs Geoinf 16:70–76

    Google Scholar 

  • Poelmans L, Rompaey AV (2009) Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: a case study in the Flanderse-Brussels region. Landsc Urban Plan 93(1):10–19

    Google Scholar 

  • Pontius RG, Chen H (2006) GEOMOD modelling. Idrisi 15: the Andes edition. Clark University, Worcester

    Google Scholar 

  • Pontius RG, Cornell JD, Hall CAS (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85:191–203

    Google Scholar 

  • Shen ZY, Qiu JL, Hong Q, Chen L (2014) Simulation of spatial and temporal distributions of non-point source pollution load in the three gorges reservoir region. Sci Total Environ 493(15):138–146

    CAS  Google Scholar 

  • Shi ZH, Ai L, Fang NF, Zhu HD (2012) Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the three gorges area, China. J Hydrol 438–439(7):156–167

    Google Scholar 

  • Swetnam RD, Fisher B, Mbilinyi BP, Munishi PK, Willcock S, Ricketts T, Mwakalila S, Balmford A, Burgess ND, Marshall AR, Lewis SL (2011) Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling. J Environ Manag 92(3):563–574

    CAS  Google Scholar 

  • Tallis HT, Polasky S (2009) Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann N Y Acad Sci 1162:265–283

    Google Scholar 

  • Tallis, H.T., Ricketts, T., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., (2010) InVEST 1.004 beta user’s guide. The natural capital project, Stanford University <http://www.naturalcapital project.org/InVEST.html> (Accessed 05.04.13)

  • Wang S, Zhang Z (2011) Effects of climate change on water resources in China. Clim Res 47(1):77–82

    CAS  Google Scholar 

  • Xiao Y, Xiao Q (2018) Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, Southwest China. Environ Monit Assess 190:258

    Google Scholar 

  • Xiao Y, Xiao Q, Ouyang ZY, Qin M (2015) Assessing changes in water flow regulation in Chongqing region, China. Environ Monit Assess 187(6):1–13

    Google Scholar 

  • Xiao Y, Ouyang ZY, Xu WH, Xiao Y, Zheng H, Xian CF (2016) Optimizing hotspot areas for ecological planning and management based on biodiversity and ecosystem services. Chin Geogr Sci 26(2):256–269

    Google Scholar 

  • Xiao Y, Xiong QL, Pan KW (2019) What is left for our next generation? Integrating ecosystem services into regional policy planning in the three gorges reservoir area of China. Sustainability 11:3

    Google Scholar 

  • Xiong QL, Xiao Y, Shi YJ, Lu YL, Xiao Q, Ouyang ZY (2013) An RRM-based ecological risk evaluation for the Chongqing section of the Yangtze River basin. J Southwest Univ 11(11):141–146 (in Chinese)

    Google Scholar 

  • Xiong QL, Xiao Y, Ouyang ZY, Pan KW, Zhang L, He XJ, Zheng H, Sun XM, Wu XG, Tariq A, Li LJ (2017) Bright side? The impacts of three gorges reservoir on local ecological service of soil conservation in southwestern China. Environ Earth Sci 76:323

    Google Scholar 

  • Xiong QL, Xiao Y, Halmy MW, Dakhil MA, Liang PH, Liu CG, Zhang L, Pandey B, Pan KW, Kafraway SB, Chen J (2019) Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet plateau of China during 2000–2015. J Arid Land 11:637–651. https://doi.org/10.1007/s40333-019-0061-2

    Article  Google Scholar 

  • Xu XB, Tan Y, Yang GS, Li HP, Su WZ (2011) Impacts of China's three gorges dam project on net primary productivity in the reservoir area. Sci Total Environ 409(22):4656–4662

    CAS  Google Scholar 

  • Yu G, Yang Y, Tu Z, Jie Y, Yu Q, Hu X, Yu H, Zhou R, Chen X, Wang H (2016) Modeling the water-satisfied degree for production of the main food crops in China. Sci Total Environ 547:215–225

    CAS  Google Scholar 

  • Zhang QF, Lou ZP (2011) The environmental changes and mitigation actions in the three gorges reservoir region, China. Environ Sci Pol 14:1132–1138

    Google Scholar 

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3):701–708

    Google Scholar 

  • Zhang Q, Xu C-Y, Becker S, Jiang T (2006) Sediment and runoff changes in the Yangtze river basin during past 50 years. J Hydrol 331(3):511–523

    Google Scholar 

  • Zhang ZM, Xu WH, Zhou WQ, Zhang L, Xiao Y, Ou XK, Ouyang ZY (2014) Integrating remote sensing with GIS-based multi-criteria evaluation approach for karst rocky desertification assessment in southwest of China. IOP Conf, Series: Earth Environ Sci 18:012038

    Google Scholar 

  • Zheng H, Robinson BE, Liang Y-C, Polasky S, Ma D-C, Wang F-C, Ruckelshaus M, Ouyang Z-Y, Daily GC (2013) Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proceedings of the National Academy of Sciences 110(41):16681–16686

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Chenggang Liu for his help during the preparation of the manuscript. The authors would like to express their sincere gratitude for the relevant members of the government departments in Chongqing for their support during the data collection. The authors are grateful to editors and anonymous reviewers for their very helpful comments and constructive feedback.

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Funding

The present study received funding from the National Key Research and Development Program (Grant No. 2016YFC0502101), the National Natural Science Foundation of China (Grant No. 31700544), and the Chinese Academy of Sciences (CAS) Light of West China Program (Grant No. 2016XBZG_XBQNXZ_B_005), the CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Program (Grant No. kxysws1901), and the Ministry of Education (China) Key Research Center Projects (Grant No. 16JJD630009, 16JJD630011).

Author information

Authors and Affiliations

Authors

Contributions

All authors worked together to design this study. Qinli Xiong and Yang Xiao contributed to initiating and conceiving the topic of this paper. Qinli Xiong and Yang Xiao collected the data and did the analysis. Pinghan Liang, Qinli Xiong, and Yang Xiao wrote the draft of this paper. All authors contributed substantially to modifying and revising this paper.

Corresponding authors

Correspondence to Yang Xiao or Pinghan Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict(s) of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Xiao, Y., Halmy, M.W.A. et al. A blessing for the Yangtze River: optimization of Chinese regional policy planning for water yield and purification in the Three Gorges Reservoir Area. Environ Sci Pollut Res 27, 7040–7052 (2020). https://doi.org/10.1007/s11356-019-07178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07178-4

Keywords

Navigation