Skip to main content

Advertisement

Log in

Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil degradation with different stress conditions like accumulation of cadmium (Cd) contents in soil and drought stress has become one of the most dangerous issues that obstruct the sustainable agriculture production. Silicon nanoparticles (Si NPs) play beneficial roles in combating various biotic and abiotic stresses but their role under combined metal and drought stress is not studied. A pot study was designed to determine the effect of Si NPs on wheat (Triticum aestivum L.) growth and uptake of Cd grown in Cd contaminated soil with different water levels under ambient conditions. Four different levels of Si NPs (0, 25, 50, and 100 mg/kg) were applied in the soil before 1 week of wheat sowing and two water levels (70% and 35% soil water-holding capacity) were introduced after 50 days of seed sowing for the remaining growth period. The lowest biomass, yield, and photosynthesis were observed in the control plants while oxidative stress and the highest Cd concentrations in shoots, roots, and grains were observed in the control plants, and the drought stress further enhanced this effect on the plants. The Si NPs treatments improved the plant growth indicators and photosynthesis, and reduced the Cd concentrations in wheat tissues, especially in grains either without or with drought stress. The Si NPs reduced the oxidative stress in leaves as was indicated by the reduced production of hydrogen peroxide, electrolyte leakage, and malondialdehyde contents, and increase in superoxide dismutase and peroxidase activities. The improvement in wheat growth and a reduction in oxidative stress and Cd concentration in tissues were dependent on the levels of Si NPs and the effect was the highest with the highest level of NPs used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S, Rehman MZ, Qayyum MF, Abbas F, Hannan F, Rinklebe J, Ok YS (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    CAS  Google Scholar 

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Rehman MZ, Ibrahim M, Arshad M, Qayyum MF (2018) Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833

    CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif MS, Hafeez F, Al-Wabel MI, Shahzad AN (2017) Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res 24:12700–12

    CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

    Google Scholar 

  • Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160

    CAS  Google Scholar 

  • Aziz R, Rafiq MT, Li T, Liu D, He Z, Stoffella PJ, Sun K, Xiaoe Y (2015) Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J Agric Food Chem 63:3599–3608

    CAS  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils 1. Agron J 54:464–465

    Google Scholar 

  • Chen R, Zhang C, Zhao Y, Huang Y, Liu Z (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res 25:2361–2368

    CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    CAS  Google Scholar 

  • Comas L, Becker S, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Google Scholar 

  • Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    CAS  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462–6473

    Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosyn 56:678–686

    CAS  Google Scholar 

  • Fajardo C, Costa G, Nande M, Martín C, Martín M, Sánchez-Fortún S (2019) Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): soil and freshwater bioassays to assess ecotoxicological impact. Sci Total Environ 656:421–432

    CAS  Google Scholar 

  • FAO, 2012. ProdStat. Core Production Data Base, Electronic resource under. http://faostat.fao.org/. Accessed 30 June 2015

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394

    CAS  Google Scholar 

  • Gong H, Chen K (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    CAS  Google Scholar 

  • Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Pollut 211:90–97

    CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2010) Determination of the silicon concentration in plant material using tiron extraction. New Phytol 188:902–906

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Google Scholar 

  • Hossain A, da Silva JA, Lozovskaya MV, Zvolinsky VP (2012) High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. J Bio Sci 19:473–487

    Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    CAS  Google Scholar 

  • Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26:7579–7588

    CAS  Google Scholar 

  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S, Tu S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manag 183:521–529

    CAS  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    CAS  Google Scholar 

  • Khalili M, Alireza PA, Naghavi MR, Mohammad-Amini E (2014) Evaluation of drought tolerance in safflower genotypes based on drought tolerance indices. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42:214–218

    Google Scholar 

  • Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M (2019) The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res 26:19859–19870

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    CAS  Google Scholar 

  • Mateos-Naranjo E, Galle A, Florez-Sarasa I, Perdomo JA, Galmés J, Ribas-Carbó M, Flexas J (2015) Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. J Plant Physiol 178:74–83

    CAS  Google Scholar 

  • Merwad AR, Desoky ES, Rady MM (2018) Response of water deficit stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic 228:132–144

    CAS  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrodyn 391:202–216

    Google Scholar 

  • Moosavi AA, Mansouri S, ZahedifarM (2015) Effect of soil water stress and nickel application on micronutrient status of canola grown on two calcareous soils. Plant Prod Sci 18:377–387

    CAS  Google Scholar 

  • Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA (2018) Geochemical fractions and phytoavailability of zinc in a contaminated calcareous soil affected by biotic and abiotic amendments. Environ Geochem Health 40:1221–1235

    CAS  Google Scholar 

  • Murtaza G, Javed W, Hussain A, Qadir M, Aslam M (2017) Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. J Phytopathol 19:199–206

    CAS  Google Scholar 

  • Naeem A, Saifullah RMZ, Akhtar T, Ok YS, Rengel Z (2016) Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Commun Soil Sci Plant Anal 47:554–562

    CAS  Google Scholar 

  • Naeem A, Ghafoor A, Farooq M (2015) Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J Sci Food Agric 95:2467–2472

    Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    CAS  Google Scholar 

  • Page AL, Miller RH, Keeny DR (1982) Methods of soil analysis (part 2). Chem Microbiol Proper Agron 9 SSSA, Madison

  • Qaswar M, Hussain S, Rengel Z (2017) Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Sci T Environ 605:454–460

    Google Scholar 

  • Qayyum MF, ur Rehman MZ, Ali S, Rizwan M, Naeem A, Maqsood MA, Khalid H, Rinklebe J, Ok YS (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, SabirM QMF (2015) Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res 22:16897–16906

    CAS  Google Scholar 

  • Rehman MZ, Khalid H, Akmal F, Ali S, Rizwan M, Qayyum MF, Iqbal M, Khalid MU, Azhar M (2017) Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ Pollut 227:560–568

    Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DC, Zia-ur-Rehman M, Zahir ZA, Rinklebe J, Tack FM, Ok YS (2017a) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    CAS  Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Rehman MZ, Farid M, Asma M (2017b) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack FM, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    CAS  Google Scholar 

  • Saxena A, Jain A, Upadhyay P, Gauba PG (2018) Applications of nanotechnology in agriculture. J Nanosci Nanoeng Appl 8:20–27

    CAS  Google Scholar 

  • Shi Z, Yang S, Han D, Zhou Z, Li X, Liu Y, Zhang B (2018) Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity. Environ Sci Pollut Res 25:7638–7646

    CAS  Google Scholar 

  • Shoeva OY, Khlestkina EK (2018) Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Res Commun 46:242–252

    CAS  Google Scholar 

  • Silva AJ, Nascimento CWA, Gouveia-Neto AS (2017) Assessment of cadmium toxicities in potted garlic plants. Acta Physiol Plant 38:211

    Google Scholar 

  • Soltanpour PN (1985) Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun Soil Sci Plant Anal 16:323–338

    CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agribiol Res 3:257–262

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisumsativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nanosilicon. Water Air Soil Pollut 227:228–213. https://doi.org/10.1007/s11270-016-2928-6

    Article  CAS  Google Scholar 

  • Xia S, Wang X, Su G, Shi G (2015) Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Environ Sci Pollut Res 22:18707–18717

    CAS  Google Scholar 

  • Yadav RK, Saini PK, Pratap M, Tripathi SK (2018) Techniques of seed priming in field crops. IJCS 6:1588–1594

    Google Scholar 

  • Yousaf B, Liu G, Wang R, Zia-ur-Rehman M, Rizwan MS, Imtiaz M, Murtaza G, Shakoor A (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ Earth Sci 75:1–10

    CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. Res Methodol Crop Physiol. Agriculture Press, Beijing, pp 208–211

    Google Scholar 

Download references

Funding

The financial support from Government College University is greatly appreciated. The authors are also thankful to the higher education commission of Pakistan for providing the research funding via Project No. 5634/Punjab/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Adrees.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.S., Rizwan, M., Hafeez, M. et al. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ Sci Pollut Res 27, 4958–4968 (2020). https://doi.org/10.1007/s11356-019-06673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06673-y

Keywords

Navigation