Skip to main content

Advertisement

Log in

Feasibility of rainwater harvesting for sustainable water management in urban areas of Egypt

  • Renewable Energy and Water Sustainability
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Egypt’s limited water resources, rapid population growth, and climate change are increasing the gap between water demand and supply. Meanwhile, significant amounts of rain fall in some regions in Egypt during specific storm events, which in some cases, lead to disasters like flash floods and inundations. Rainwater harvesting (RWH) can be considered as a sustainable promising solution to water shortage and inundation problems. In this work, the feasibility of RWH for urban areas was assessed over 22 cities throughout Egypt. Results show that the annual volume of rainwater harvested can reach 142.5 MCM in the considered cities, provided that all rain falling on the urban areas is collected. High potential of rainfall harvesting was found for cities that located on the North Coast, e.g., the potential water saving from the share of RWH in Alexandria can satisfy around 12% of its future supplementary domestic water needs. In contrast, rainfall over the cities located on the middle and the south of the country is insignificant to be harvested. A case study for the 5th settlement region in Cairo was discussed in terms of groundwater recharge and surface runoff estimation for two conditions: No–RWH and RWH systems by implementing recharge wells to store rainwater into the aquifer. Land cover classification maps of urban areas were created by using the ARCGIS software to estimate equivalent infiltration coefficients. The results demonstrate that the implementation of such RWH system has a significant impact on the regional water cycle, where the effective infiltration coefficient increased from 10% (No–RWH) to 75% (RWH) in the case study. Accordingly, the runoff coefficient decreased in the case study from 0.8 (No–RWH) to 0.15 (RWH), and the volume of runoff decreased in the case of RWH by around 82% lower than that of the No–RWH condition. Thus, direct infiltration of RWH into an aquifer can play an important role in sound water management for urban environments, as this may lead to a significant reduction in risks of flooding and expenses of municipal drainage systems installation and operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer A. Gado.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gado, T.A., El-Agha, D.E. Feasibility of rainwater harvesting for sustainable water management in urban areas of Egypt. Environ Sci Pollut Res 27, 32304–32317 (2020). https://doi.org/10.1007/s11356-019-06529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06529-5

Keywords

Navigation