Skip to main content
Log in

Cadmium accumulation in winter crops and the assessment of paddy soil phytoremediation in southern China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution, in particular with cadmium (Cd), threatens both the environment and human health. The phytoremediation of contaminated soil is one recently developed eco-friendly technique that can be applied to mitigate this issue. Repairing Cd-contaminated paddy soil during the fallow winter period can ensure future rice production while reducing heavy metal pollution. Seven winter crops were planted in this study to investigate the accumulation of this metal in mid-level Cd and low-level lead (Pb) and zinc (Zn)-contaminated paddy soils. Results show that after 4 or 5 months of growth, all crops had become moderately tolerant to toxicity; indeed, shoot Cd bioconcentration factor (BCF) values were 37.4, 17.0, 11.5, 10.5, 5.8, 3.9, and 1.4 for Sedum alfredii (SA), Witloof chicory (WC), edible-leaf beet (EB), Cardamine hupingshanensis (CH), leafy mustard (LM), oil mustard (OM), and perennial ryegrass (PR), respectively, while shoot Pb and Zn BCF values were less than 1 and 5, respectively. And SA, WC, EB, and CH all had higher shoot Cd accumulation capacities, especially SA in which the level reached 53.9 mg kg−1. The calculation results of restoration potential show that it will take at least 5 years for WC, 7 years for SA and EB, and 10 years for CH to reach the repair target. These results show that it is possible to grow winter crops to repair soil Cd pollution, with WC, EB, CH, and SA, the best candidates for making full use of fallow periods while simultaneously achieving soil phytoremediation. The results of this study will prove useful for establishing a new summer production model by ensuring the winter repair of contaminated paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239(1):103–111

    Article  CAS  Google Scholar 

  • Annu, Garg A, Urmila (2016) Level of Cd in different types of soil of Rohtak district and its bioremediation. J Environ Chem Eng 4(4):3797–3802

    Article  CAS  Google Scholar 

  • Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8(3):247–257

    Article  Google Scholar 

  • Bai HF, Li XM (2012) Cadmium accumulation in hyper accumulator Cardamine hupingshanensis. Jiangsu J Agric Sci 28(1):76–79 (in Chinese)

    Google Scholar 

  • Bauddh K, Singh RP (2012) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85(11):13–22

    Article  CAS  Google Scholar 

  • Brunetti G, Farrag K, Rovira PS, Nigro F, Senesi N (2011) Greenhouse and field studies on cr, cu, pb and zn phytoextraction by brassica napus from contaminated soils in the apulia region, southern Italy. Geoderma 160(3–4):517–523

    Article  CAS  Google Scholar 

  • Ent AVD, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyper accumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  • Fotiadis EA, Pritsa TS, Vardavakis E, Lolas PC, Kungolos A, Emmanouil C (2009) Growth of weed and crop plants under cadmium stress and their phytoremediation potential. Fresenius Environ Bull 18(2):175–181

    CAS  Google Scholar 

  • Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former pb/zn smelter in Austria: batch, pot and field experiments. Environ Pollut 144(1):40–50

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390(2):301–310

    Article  CAS  Google Scholar 

  • Haghighi M, Kafi M, Pessarakli M, Sheibanirad A, Sharifinia MR (2016) Using kale (Brassica oleracea var. acephala) as a phytoremediation plant species for lead (Pb) and cadmium (Cd) removal in saline soils. J Plant Nutr 39(10):1460–1471

    Article  CAS  Google Scholar 

  • Hammer D, Keller C (2010) Phytoextraction of Cd and Zn with thlaspi caerulescens in field trials. Soil Use Manag 19(2):144–149

    Article  Google Scholar 

  • Kahr G, Madsen FT (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl Clay Sci 9(5):327–336

    Article  CAS  Google Scholar 

  • Khan M N, Mobin M, Abbas Z K, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene 5:225–240

    Chapter  Google Scholar 

  • Komainda M, Taube F, Kluß C, Herrmann A (2016) Above- and belowground nitrogen uptake of winter catch crops sown after silage maize as affected by sowing date. Eur J Agron 79:31–42

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Yang Y, Li B, Wu Y, Sun H, Yang YP (2016) Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7(1):1862

    Google Scholar 

  • Liang F, Li YL, Zhang GL, Tan MG, Lin J, Liu W (2010) Total and speciated arsenic levels in rice from China. Food Addit Contam 27(6):810–816

    Article  CAS  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa, L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16(1):33–42

    Article  CAS  Google Scholar 

  • Liu J, Tran H, Wang DQ, Zhu YN (2011) Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environ Sci Pollut Res 18(9):1623–1632

    Article  CAS  Google Scholar 

  • Liu J, Zhang W, Qu P, Wang MX (2016) Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Front Environ Sci Eng China 10(2):262–269

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator sedum alfredii. J Plant Physiol 166(6):579–587

    Article  CAS  Google Scholar 

  • Lu Z, Zhang Z, Su Y, Liu C, Shi G (2013) Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ Saf 91(4):147–155

    Article  CAS  Google Scholar 

  • Luo J, Qi S, Peng L, Xie X (2017) Enhanced phytoremediation capacity of a mixed-species plantation of eucalyptus globulus, and chickpeas. J Geochem Explor 182:201–205

    Article  CAS  Google Scholar 

  • Mandzhieva SS, Minkina TM, Chaplygin VA, Motuzova GV, Sushkova SN, Bauer TV (2016) Plant contamination by heavy metals in the impact zone of Novocherkassk power station in the south of Russia. J Soils Sediments 16(4):1383–1391

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132(1):21–27

    Article  CAS  Google Scholar 

  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria-effects on phytoremediation strategies. Chemosphere 92(1):74–83

    Article  CAS  Google Scholar 

  • Mertens J, Vervaeke P, Meers E, Tack FM (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40(6):1962–1968

    Article  CAS  Google Scholar 

  • Moreno Caselles J, Moral R, Perez Espinosa A, Perez Murcia MD (2000) Cadmium accumulation and distribution in cucumber plant. J Plant Nutr 23(2):243–250

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2, and 2nd agronomy. Am. Soc Agron. Inc., Madison, WI, p 9

    Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13(7):637–646

    Article  CAS  Google Scholar 

  • Robinson B, Green S, Mills T, Clothier B, Velde MVD, Laplane R (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Soil Res 41(3):599–611

    Article  Google Scholar 

  • Rojas-Tapias DF, Bonilla RR, Dussán J (2012) Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers. Water Air Soil Pollut 223(2):643–654

    Article  CAS  Google Scholar 

  • Sabreen S, Sugiyama SI (2008) Trade-off between cadmium tolerance and relative growth rate in 10 grass species. Environ Exp Bot 63(1):327–332

    Article  CAS  Google Scholar 

  • Schnepel K, Hoffmann CM (2016) Effect of extending the growing period on yield formation of sugar beet. J Agron Crop Sci 202(6):530–541

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Zhukovskaya NV, Schat H (2015) Cadmium tolerance and accumulation in excluder Thlaspi arvense, and various accessions of hyperaccumulator Noccaea caerulescens. Russ J Plant Physiol 62(6):837–846

    Article  CAS  Google Scholar 

  • Shaheen MA, El-Nakhlawy FS, Almehmadi FM, Ihsan MZ, Al-Shareef AR (2016) Assessment of seasonal variation for air pollutant accumulation by Zizyphus, tree under washing treatment. Environ Monit Assess 188(6):1–10

    Article  CAS  Google Scholar 

  • Shi GR, Cai QS (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27(5):555–561

    Article  CAS  Google Scholar 

  • Shi GR, Liu CF, Cui MC, Ma YH, Cai QS (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol 168(1):163–173

    Article  CAS  Google Scholar 

  • Shi GR, Su G, Lu Z, Liu CF, Wang X (2014) Relationship between biomass, seed components and seed cd concentration in various peanut (Arachis hypogaea l.) cultivars grown on Cd-contaminated soils. Ecotoxicol Environ Saf 110:174–181

    Article  CAS  Google Scholar 

  • Shi GR, Xia SL, Liu CF, Zhang Z (2016) Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environ Sci Pollut Res 23(22):1–10

    Article  CAS  Google Scholar 

  • Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumulation and tolerance in populations of paspalum distichum and cynodon dactylon. Environ Pollut 120(2):445–453

    Article  CAS  Google Scholar 

  • Sikka R, Nayyar V, Sidhu SS (2009) Monitoring of Cd pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India. Environ Monit Assess 154(4):53–64

    Article  CAS  Google Scholar 

  • Stingu A, Volf I, Popa VI, Gostin I (2012) New approaches concerning the utilization of natural amendments in cadmium phytoremediation. Ind Crops Prod 35(1):53–60

    Article  CAS  Google Scholar 

  • Suchkova N, Tsiripidis I, Alifragkis D, Ganoulis J, Darakas E, Sawidis T (2014) Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecol Eng 69:160–169

    Article  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator sedum alfredii. J Plant Physiol 164(11):1489–1498

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of cd-hyperaccumulator solanum nigrum l. Bioresour Technol 99(5):1103–1110

    Article  CAS  Google Scholar 

  • Takuya A, Fukami M, Ogasawara M (2008) Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci Plant Nutr 54(4):566–573

    Article  CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(1):5

    Article  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118(3):453–461

    Article  CAS  Google Scholar 

  • Walkley AJ, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Wang Q, Gu M, Ma X, Zhang H, Wang Y, Cui J, Gao W, Gui J (2015) Model optimization of cadmium and accumulation in switchgrass (panicum virgatum l.): potential use for ecological phytoremediation in cd-contaminated soils. Environ Sci Pollut Res Int 22(21):16758–16771

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q, Koval PV (2006) Flowering stage characteristics of cadmium hyperaccumulator solanum nigrum l. and their significance to phytoremediation. Sci Total Environ 369(1):441–446

    Article  CAS  Google Scholar 

  • Williams NSG, Schwartz MW, Vesk PA, Mccarthy MA, Hahs AK, Clemants SE (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97(1):4–9

    Article  Google Scholar 

  • Xiao CW, Luo XY, Tian Y, Lu XY (2013) Research progress of bioremediation of heavy metal cadmium pollution. Chem Bioeng 30(8):1–4

    Google Scholar 

  • Xiao L, Guan D, Peart MR, Chen Y, Li Q (2017) The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas. Environ Sci Pollut Res 24(3):2558–2571

    Article  CAS  Google Scholar 

  • Xie LH, Tang SQ, Wei XJ, Shao GN, Jiao GA, Sheng ZH, Luo J, Hu PS (2017) The cadmium and lead content of the grain produced by leading chinese rice cultivars. Food Chem 217:217–224

    Article  CAS  Google Scholar 

  • Yang Y, Ge YC, Zeng HY, Zhou XH, Peng L, Zeng QR (2017a) Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Yang Y, Zhou XH, Tie BQ, Peng L, Li HL, Wang KL, Zeng QR (2017b) Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188:148–156

    Article  CAS  Google Scholar 

  • Zhao K, Liu X, Xu J, Selim HM (2010) Heavy metal contaminations in a soil-rice system: identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater 181(1):778–787

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant from the National Key Research and Development Program of China (2016YFD0800304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Zeng.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Chen, L., Zhou, X. et al. Cadmium accumulation in winter crops and the assessment of paddy soil phytoremediation in southern China. Environ Sci Pollut Res 26, 17173–17182 (2019). https://doi.org/10.1007/s11356-019-05054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05054-9

Keywords

Navigation