Skip to main content

Advertisement

Log in

State of rare earth elements in the sediment and their bioaccumulation by mangroves: a case study in pristine islands of Indian Sundarban

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The mangrove ecosystems are known to efficiently sequester trace metals both in sediments and plant biomass. However, less is known about the chemistry of rare earth elements (REE) in the coastal environments, especially in the world’s largest mangrove province, the Sundarban. Here, the concentration of REE in the sediment and plant organs of eight dominant mangrove species (mainly Avicennia sp.) in the Indian Sundarban was measured to assess REE sources, distribution, and bioaccumulation state. Results revealed that light REE (LREE) were more concentrated than the heavy REE (HREE) (128–144 mg kg−1 and 12–15 mg kg−1, respectively) in the mangrove sediments, with a relatively weak positive europium anomaly (Eu/Eu* = 1.03–1.14) with respect to North American shale composite. The primary source of REE was most likely linked to aluminosilicate weathering of crustal materials, and the resultant increase in LREE in the detritus. Vertical distribution of REE in one of the long cores from Lothian Island was altered by mangrove root activity and dependent on various physicochemical properties in the sediment (e.g., Eh, pH, organic carbon, and phosphate). REE uptake by plants was higher in the below-ground parts than in the above-ground plant tissues (root = 3.3 mg kg−1, leaf + wood = 1.7 mg kg−1); however, their total concentration was much lower than in the sediment (149.5 mg kg−1). Species-specific variability in bioaccumulation factor and translocation factor was observed indicating different REE partitioning and varying degree of mangrove uptake efficiency. Total REE stock in plant (above + live below ground) was estimated to be 168 g ha−1 with LREE contributing ~ 90% of the stock. This study highlighted the efficiency of using REE as a biological proxy in determining the degree of bioaccumulation within the mangrove environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Analuddin K, Sharma S, Jamili J, Septianaa A, Sahidind I, Riansee U, Nadaoka K (2017) Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Mar Pollut Bull 125:472–480

    Article  CAS  Google Scholar 

  • APHA 20005 (1995) Standard methods for the examination of water and waste water, Washington, pp 5–15

  • Åström M (2001) Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils. Chem Geol 175:249–258

    Article  Google Scholar 

  • Ayres M, Harris N (1997) REE fractionation and Nd isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem Geol 139:249–269

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrials higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–26

    CAS  Google Scholar 

  • Banfield JF, Eggleton RA (1989) Apatite replacement and rare earth element mobilization, fractionation and fixation during weathering. Clay Clay Miner 37:113–127

    Article  CAS  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  CAS  Google Scholar 

  • Bau M, Möller P, Dulski P (1997) Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry 56 (1-2):123-131

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London

    Google Scholar 

  • Brito P, Malvar M, Galinha C, Caçador I, Canário J, Araújo F, Raimundo J (2018a) Yttrium and rare earth elements fractionation in salt marsh halophyte plants. Sci Total Environ 643:1117–1126

    Article  CAS  Google Scholar 

  • Brito P, Prego R, Mil-Homens M, Caçador I, Caetano M (2018b) Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Sci Total Environ 621:317–325

    Article  CAS  Google Scholar 

  • Byrne RH, Kim KH (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656

    Article  CAS  Google Scholar 

  • Caccia VG, Millero FJ (2007) Distribution of yttrium and rare earths in Florida Bay sediments. Mar Chem 104:171–185

    Article  CAS  Google Scholar 

  • Cao XD, Chen Y, Gu ZM, Wang XR (2000) Determination of trace rare earth elements in plant and soil samples by inductively coupled plasma-mass spectrometry. Int J Environ An Ch 76:295–309

    Article  CAS  Google Scholar 

  • Cao XD, Chen Y, Wang XR, Deng XH (2001) Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere 44:655–661

    Article  CAS  Google Scholar 

  • Carpenter D, Boutin C, Allison JE, Parsons JL, Ellis DM (2015) Uptake and effects of six rare earth elements (rees) on selected native and crop species growing in contaminated soils. PLoS One 10(6):e0129936

    Article  CAS  Google Scholar 

  • Censi P, Spoto SE, Nardone G, Saiano F, Punturo R, Geronimo D, Mazzola SI, Bonanno S, Patti A, Sprovieri B, Ottonello D (2005) Rare-earth elements and yttrium distributions in mangrove coastal water systems: the western Gulf of Thailand. Chem Ecol 21:255–277

    Article  CAS  Google Scholar 

  • Clark MW, McConchie D, Lewis DW, Saenger P (1998) Redox stratification and heavy metal partitioning in Avicennia dominated mangrove sediments: a geochemical model. Chem Geol 149:147–171

    Article  CAS  Google Scholar 

  • Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotechnol J 2:60–67

    Google Scholar 

  • Das S, Jana TK, De TK (2014) Vertical profile of phosphatase activity in the Sundarban mangrove forest, north east coast of Bay of Bengal. India Geomicrobiol J 31:716–725

    Article  CAS  Google Scholar 

  • Davranche M, Grybos M, Gruau G, Pédrot M, Dia A, Marsac R (2011) Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem Geol 284:127–137

    Article  CAS  Google Scholar 

  • de Oliveira C, Ramos SJ, Siqueira JO, Faquin V, de Castro EM, Amaral DC, Techio VH, Coelho LC, e Silva PHP, Schnug E, LRG G (2015) Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol Environ Saf 122:136–144

    Article  CAS  Google Scholar 

  • Dong WM, Wang XK, Bian XY, Wang AX, Du JZ, Tao ZY (2001) Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl Radiat Isot 54:603–610

    Article  CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosci 2:1–8

    Article  CAS  Google Scholar 

  • França EJ, De Nadai Fernandes EA, Turra C, Bacchi MA, Elias C, Tagliaferro F et al (2011) Survey of lanthanoids in plants from a tropical region. Int J Environ Heal 5:32–48

    Article  Google Scholar 

  • Fu F, Akagi T, Shinotsuka K (1998) Distribution pattern of rare earth elements in fern: implication for intake of fresh silicate particles by plants. Biol Trace Elem Res 64:13–26

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupre B, Allegre CJ, Negrel P (1997) Chemical and physical denudation in the Amazon river basin. Chem Geol 142:141–173

    Article  CAS  Google Scholar 

  • Graf JL Jr (1977) Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Econ Geol 72:527–548

    Article  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemic, Germany

    Google Scholar 

  • Grawunder A, Merten D, Büchel G (2014) Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ Sci Pollut Res 21:6812–6823

    Article  CAS  Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The North American shale composite; its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482

    Article  CAS  Google Scholar 

  • Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwater: weathering of phosphate minerals. Chem Geol 175:495–508

    Article  CAS  Google Scholar 

  • Hannigan R, Dorval E, Jones C (2010) The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay. Chem Geol 272:20–30

    Article  CAS  Google Scholar 

  • Haskin LA, Frey FA, Schmitt RA, Smith RH (1966) Meteoritic, solar and terrestrial rare earth distributions. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and Chemistry of the Earth. Pergamon Press, Oxford, pp 169–321

    Google Scholar 

  • Haskin LA, Wildeman TR, Haskin MA (1968) An accurate procedure for the determination of the rare earths by neutron activation. J Radioanal Nucl Ch 1:337–348

    Article  CAS  Google Scholar 

  • Heidam NZ (1982) Atmospheric aerosol factor models, mass and missing data. Atmos Environ 16:1923–1931

    Article  CAS  Google Scholar 

  • Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  • Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant Anal 37:1381–1420

    Article  CAS  Google Scholar 

  • Khan AM, Abu Bakar NK, Abu Bakar AF, Ashraf MA (2017) Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review. Environ Sci Pollut Res 24:22764–22789

    Article  CAS  Google Scholar 

  • Kötschau A, Büchel G, Einax JW, von Tümpling W, Merten D (2014) Sunflower (Helianthus annuus): phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environ Earth Sci 72:2023–2031

    Google Scholar 

  • Lecomte KL, Sarmiento AM, Borrego J, Nieto JM (2017) Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain). Mar Pollut Bull 121:282–291

    Article  CAS  Google Scholar 

  • Li FL, Shan XQ, Zhang TH, Zhang SZ (1998) Evaluation of plant availability of rare earth elements is soils by chemical fractionation and multiple regression analysis. Environ Pollut 102:269–277

    Article  CAS  Google Scholar 

  • Ma YJ, Huo RK, Liu CQ (2002) Speciation and fractionation of rare earth elements in a lateritic profile southern China: identification of the carriers of Ce anomalies. Proceedings of the Goldschmidt conference, Davos, Switzerland

    Google Scholar 

  • Mandal SK, Ray R, Chowdhury C, Majumder N, Jana TK (2013) Implication of organic matter on arsenic and antimony sequestration in sediment: evidence from Sundarban mangrove forest, India. Bull Environ Contam Toxicol 90:451–455

    Article  CAS  Google Scholar 

  • Markert B, Li ZD (1991) Natural background concentrations of rare-earth elements in a forest ecosystem. Sci Total Environ 103:27–35

    Article  CAS  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Dołęgowska S (2016) Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environ Sci Pollut Res 23:24943–24959

    Article  CAS  Google Scholar 

  • Millero FJ (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim Cosmochim Acta 56:3123–3132

    Article  CAS  Google Scholar 

  • Mleczek P, Borowiak K, Budka A, Niedzielski P (2018) Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ Sci Pollut Res 25:23695–23711

    Article  CAS  Google Scholar 

  • Mohanty AK, Bramha SN, Satpathy KK, Padhi RK, Panigrahi SN, Samantara MK, Barath Kumar S, Sarkar SK, Prasad MVR (2018) Geochemical distribution of forms of phosphorus in marine sediment of Bay of Bengal, southeast coast of India. Indian Journal of Geo-Marine Sciences 47:1132–1141

    Google Scholar 

  • Morrison JF, Cleland WW (1983) Lanthanide ATP complexes determination of their dissociation constants and mechanism of action as inhibitors of yeast hexo kinase. Biochemistry-US 22:5507–5513

    Article  CAS  Google Scholar 

  • Nakanishi TM, Takahashi J, Yagi H (1997) Rare earth element, Al, and Sc partition between soil and Caatinger wood grown in north-east Brazil by instrumental neutron activation analysis. Biol Trace Elem Res 60:163–174

    Article  CAS  Google Scholar 

  • Olivares E, Aguiar G, Pean E, Colonnello G, Benitez M, Herrera F (2014) Rare earth elements related to aluminium in Rhynchanthera grandiflora growing in palm swamp communities. Interciencia 39:32–39

    Google Scholar 

  • Olmez I, Sholkovitz ER, Hermann D, Eganhouse RP (1991) Rare earth elements in sediments of southern California: a new anthropogenic indicator. Environ Sci Technol 25:310–316

    Article  CAS  Google Scholar 

  • Perez-Lopez R, Macias F, Canovas CR, Sarmiento AR, Perez-Moreno AM (2016) Pollutant flows from a phosphogypsum disposal area to an estuarine environment: an insight from geochemical signatures. Sci Total Environ 553:42–51

    Article  CAS  Google Scholar 

  • Pickard BG (1970) Comparison of calcium and lanthanum ions in the Avena-coleoptile growth test. Planta 91:314–320

    Article  CAS  Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2007) Rare earth elements complexation with humic acid. Chem Geol 243:128–141

    Article  CAS  Google Scholar 

  • Prasad MBK, Ramanathan A (2008) Distribution of rare earth elements in the Pichavaram mangrove sediments of the southeast coast of India. J Coast Res 24:126–134

    Article  CAS  Google Scholar 

  • Rajkumar K, Ramanathan AL, Behera PN (2012) Characterization of clay minerals in the Sunda, Mangrove River sediments by SEM/EDS. J Geol Soc India 80:429–434

    Article  CAS  Google Scholar 

  • Ramesh R, Ramanathan AL, Arthur James R, Subramanian V, Jacobsen SB, Holland HD (1999) Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiol 397:89–99

    Article  CAS  Google Scholar 

  • Ray R, Ganguly D, Chowdhury C, Dey M, Das S, Dutta MK, Mandal SK, Majumder N, De TK, Mukhopadhyay SK, Jana TK (2011) Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos Environ 45:5016–5024

    Article  CAS  Google Scholar 

  • Ray R, Majumder N, Das S, Chowdhury C, Jana TK (2014) Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India. Mar Chem 167:33–43

    Article  CAS  Google Scholar 

  • Ray R, Majumder N, Chowdhury C, Das S, Jana TK (2017) Phosphorus budget of the Sundarban mangrove ecosystem: Box model approach. Estuar Coasts 41:1036–1049

    Article  CAS  Google Scholar 

  • Ray R, Baum A, Rixen T, Gleixner G, Jana TK (2018) Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci Total Environ 621:535–547

    Article  CAS  Google Scholar 

  • Rice AJ, Maccarthy P (1989) Characterization of stream sediment humin. In: Suffet H, Maccarthy P (eds) Aquatic humic substances. American Chemical Society, Washington, p 54

    Google Scholar 

  • Rodrıiguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Santos IR, DIT F´v, CEGR S, Silva-Filho EV (2007) Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Mar Chem 107:464–474

    Article  CAS  Google Scholar 

  • Sappal SM, Ramanathan AL, Ranjan RK, Singh G, Kumar A (2014) Rare earth elements as biogeochemical indicators in mangrove ecosystems (Pichavaram, Tamilnadu, India). J Sediment Res 84:781–791

    Article  CAS  Google Scholar 

  • Sharpe AG (1999) Inorganic Chemistry, 3rd edn. Addison-Wesley-Longman, Inc., England

    Google Scholar 

  • Sholkovitz ER (1988) Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: reinterpretation of terrigenous input patterns to the oceans. Am J Sci 288:236–281

    Article  CAS  Google Scholar 

  • Sholkovitz ER (1990) REE’s in marine sediments and geochemical standards. Chem Geol 88:333–347

    Article  CAS  Google Scholar 

  • Silva-Filho EV, Sanders CJ, Bernat M, Figueiredo AMG, Sella SM, Wasserman J (2011) Origin of rare earth element anomalies in mangrove sediments, Sepetiba Bay, SE Brazil: used as geochemical tracers of sediment sources. Environ Earth Sci 64:1257–1267

    Article  CAS  Google Scholar 

  • Sonke JE (2006) Lanthanide-humic substances complexation. II. Calibration of humic ionbinding model V. Environ Sci Technol 40:7481–7487

    Article  CAS  Google Scholar 

  • Thomas P, Carpenter D, Boutin C, Allison JE (2014) Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Chemosphere 96:57–66

    Article  CAS  Google Scholar 

  • Tranchida G, Oliveri E, Angelone M, Bellanca A, Censi P, D’Elia M, Neri R, Placenti F, Sprovieri S, Mazzola S (2011) Distribution of rare earth elements in marine sediments from the Strait of Sicily (western Mediterranean Sea): evidence of phosphogypsum waste contamination. Mar Pollut Bull 62:182–191

    Article  CAS  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems-a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  • Tyler G, Olsson T (2002) Conditions related to solubility of rare and minor elements in forest soils. J Plant Nutr Soil Sci 165:594–601

    Article  CAS  Google Scholar 

  • Tyler G, Olsson T (2005) Rare earth elements in forest-floor herbs as related to soil conditions and mineral nutrition. Biol Trace Elem Res 106:177–191

    Article  CAS  Google Scholar 

  • Vermeire M, Cornu S, Fekiacova Z, Detienne M, Delvaux B et al (2016) Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem Geol 446:163–174

    Article  CAS  Google Scholar 

  • Vischer PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: m measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol Oceanogr 36:1476–1480

    Article  Google Scholar 

  • Volokh AA, Gorbunov AV, Gundorina SF, Revich BA, Frontasyeva MV, Pal CS (1990) Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Sci Total Environ 95:141–148

    Article  CAS  Google Scholar 

  • Wan YX, Liu CQ (2006) The effect of humic acid on the adsorption of REE on kaolin. Colloids Surf A Physicochem Eng Asp 290:112–117

    Article  CAS  Google Scholar 

  • Wen B, Yuan DA, Shan XQ, Li FL, Zhang SZ (2001) The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions. Chem Speciat Bioavailab 13:39–48

    Article  CAS  Google Scholar 

  • Wiche O, Kummer N-A, Heilmeier H (2016) Interspecific roots interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402:235–245

    Article  CAS  Google Scholar 

  • Wiche O, Tischler D, Fauser C, Lodemann J, Heilmeier H (2017) Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea. Int J Phytoremediat 19:746–754

    Article  CAS  Google Scholar 

  • Windom HL, Schropp SJ, Calder FD, Ryan JD, Smith RG, Burney LC, Lewis FG, Rawlinson CH (1989) Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environ Sci Technol 23:314–320

    Article  CAS  Google Scholar 

  • Wright J, Schrader H, Holster WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta 51:631–644

    Article  CAS  Google Scholar 

  • Wu ZH, Luo J, Guo HY, Wang XR, Yang CS(2015) Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid. Chemical Speciation & Bioavailability 13 (3):75-81

  • Xiaoqing L, Hao H, Chao L, Min Z, Fashui H (2009) Physico-chemical property of rare earths—effects on the energy regulation of photosystem II in Arabidopsis thaliana. Biol Trace Elem Res 130:141–151

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y (1997) Determination of major and trace elements in mushroom, plant and soil samples collected from Japanese forests. Int J Environ An Ch 67:49–58

    Article  CAS  Google Scholar 

  • Zhang R, Yan C, Liu J (2013) Effect of mangroves on the horizontal and vertical distributions of rare earth elements in sediments of the Zhangjiang Estuary in Fujian Province, Southeastern China. J Coast Res 29:1341–1350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RR is indebted to LabexMER International Postdoctoral Program for providing fellowship (FNP150009-DOCT-RAY). AGG thanks to the Laboratoire d’Excellence LabexMer (ANR-10-LABX-19) and the Postdoctoral program from the Universidad de Las Palmas de Gran Canaria. The authors sincerely thank the Sundarban Biosphere Reserve for giving permission to undertake this study inside the mangrove forest. We thank the editor and reviewer for their comments that helped much improving the manuscript.

Funding

SKM received minor research project grant from the University Grant Commission, New Delhi (No. F, PSW-076/13-14, ERO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghab Ray.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S.K., Ray, R., González, A.G. et al. State of rare earth elements in the sediment and their bioaccumulation by mangroves: a case study in pristine islands of Indian Sundarban. Environ Sci Pollut Res 26, 9146–9160 (2019). https://doi.org/10.1007/s11356-019-04222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04222-1

Keywords

Navigation