Skip to main content
Log in

Characterization of reactive photoinduced species in rainwater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rainfall is a highly effective and important carrier that can remove a majority of aerosol mass into land and marine ecosystems. The photochemically formed reactive species in the rainwater are likely dominant oxidants for organic and inorganic substances. Here, we collected rainwater samples from Oct. 2016 to Dec. 2016 in CUG campus (Wuhan, Hubei, China) and measured their formation rates, lifetimes, steady-state concentrations, and apparent quantum yields of reactive photoinduced species, including hydroxyl radical (HO•), H2O2, singlet oxygen (1O2), and chromophoric dissolved organic matter triplet state (3CDOM*) in the laboratory. Results showed that rainwater samples contained photochemical sources, like DOM, nitrate, heavy metals, etc. Quantification of HO• showed that rHO• (the photogeneration rate of HO•) were in the range of 1.05 × 10−10–4.56 × 10−10 M s−1, and [•OH]ss (the steady-state concentrations of OH•) were of 4.06 × 10−18–2.97 × 10−17 M for the three samples. Further investigations revealed that 10–24% of r•OH was attributed to nitrate photolysis, suggesting DOM was possibly the prevailing source of HO•. Apparent quantum yields of H2O2H2O2) correlated negatively with E2/E3 (the ratio of absorption at 250 and 365 nm), while Φ1O2 and Φ3CDOM* increased with elevated E2/E3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Housari F, Vione D, Chiron S, Barbati S (2010) Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 9(1):78–86

    Article  Google Scholar 

  • Anastasio C, Jordan AL (2004) Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic. Atmos Environ 38(8):1153–1166

    Article  CAS  Google Scholar 

  • Anastasio C, McGregor KG (2001) Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen. Atmos Environ 35(6):1079–1089

    Article  CAS  Google Scholar 

  • Anastasio C, Galbavy ES, Hutterli MA, Burkhart JF, Friel DK (2007) Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmos Environ 41(24):5110–5121

    Article  CAS  Google Scholar 

  • Bader H, Sturzenegger V, Hoigne J (1988) Photometric-method for the determination of low concentrations of hydrogen-peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res 22(9):1109–1115

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17(2):513–886

    Article  CAS  Google Scholar 

  • Canonica S (2007) Oxidation of aquatic organic contaminants induced by excited triplet states. Chimia 61(10):641–644

    Article  CAS  Google Scholar 

  • Canonica S, Freiburghaus M (2001) Electron-rich phenols for probing the photochemical reactivity of freshwaters. Environ Sci Technol 35(4):690–695

    Article  CAS  Google Scholar 

  • Cerqueira M, Pio C, Legrand M, Puxbaum H, Kasper-Giebl A, Afonso J, Preunkert S, Gelencser A, Fialho P (2010) Particulate carbon in precipitation at European background sites. J Aerosol Sci 41(1):51–61

    Article  CAS  Google Scholar 

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation - emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710

    Article  CAS  Google Scholar 

  • Chen Z, Chu L, Galbavy ES, Ram K, Anastasio C (2016) Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations. Atmos Chem Phys 16(15):9579–9590

    Article  CAS  Google Scholar 

  • Cooper WJ, Lean DRS (1989) Hydrogen peroxide concentration in a northern lake: photochemical formation and diel variability. Environ Sci Technol 23(11):1425–1428

    Article  CAS  Google Scholar 

  • Dalrymple RM, Carfagno AK, Sharpless CM (2010) Correlations between dissolved organic matter optical properties and apparent quantum yields of singlet oxygen and hydrogen peroxide. Environ Sci Technol 44(15):5824–5829

    Article  CAS  Google Scholar 

  • Deister U, Warneck P, Wurzinger C (1990) OH radicals generated by NO3 photolysis in aqueous solution: competition kinetics and a study of the reaction OH + CH2(OH)SO3 . Ber Bunsen Phys Chem 94(5):594–599

  • Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38(14):3885–3891

    Article  Google Scholar 

  • George C, Ammann M, D'Anna B, Donaldson DJ, Nizkorodov SA (2015) Heterogeneous photochemistry in the atmosphere. Chem Rev 115(10):4218–4258

    Article  CAS  Google Scholar 

  • Golanoski KS, Fang S, Del Vecchio R, Blough NV (2012) Investigating the mechanism of phenol photooxidation by humic substances. Environ Sci Technol 46(7):3912–3920

    Article  CAS  Google Scholar 

  • Halladja S, Ter Halle A, Aguer J-P, Boulkamh A, Richard C (2007) Inhihition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environ Sci Technol 41(17):6066–6073

    Article  CAS  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969

    Article  Google Scholar 

  • Helms JR, Stubbins A, Perdue EM, Green NW, Chen H, Mopper K (2013) Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar Chem 155:81–91

    Article  CAS  Google Scholar 

  • Herrmann H, Tilgner A, Barzaghi P, Majdik Z, Gligorovski S, Poulain L, Monod A (2005) Towards a more detailed description of tropospheric aqueous phase organic chemistry: capram 3.0. Atmos Environ 39(23):4351–4363

    Article  CAS  Google Scholar 

  • Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Sol C 15(4):365–391

  • Kieber RJ, Peake B, Willey JD, Jacobs B (2001) Iron speciation and hydrogen peroxide concentrations in New Zealand rainwater. Atmos Environ 35(34):6041–6048

    Article  CAS  Google Scholar 

  • Kieber RJ, Skrabal SA, Smith BJ, Willey JD (2005) Organic complexation of Fe(II) and its impact on the redox cycling of iron in rain. Environ Sci Technol 39(6):1576–1583

    Article  CAS  Google Scholar 

  • Kieber RJ, Whitehead RF, Reid SN, Willey JD, Seaton PJ (2006) Chromophoric dissolved organic matter (CDOM) in rainwater, southeastern North Carolina, USA. J Atmos Chem 54(1):21–41

    Article  CAS  Google Scholar 

  • Kieber RJ, Smith J, Mullaugh KM, Southwell MW, Avery GB Jr, Willey JD (2009) Influence of dissolved organic carbon on photochemically mediated cycling of hydrogen peroxide in rainwater. J Atmos Chem 64(2–3):149–158

    Article  CAS  Google Scholar 

  • Kieber RJ, Adams MB, Wiley JD, Whitehead RF, Avery GB Jr, Mullaugh KM, Mead RN (2012) Short term temporal variability in the photochemically mediated alteration of chromophoric dissolved organic matter (CDOM) in rainwater. Atmos Environ 50:112–119

    Article  CAS  Google Scholar 

  • Lee E, Glover CM, Rosario-Ortiz FL (2013) Photochemical formation of hydroxyl radical from effluent organic matter: role of composition. Environ Sci Technol 47(21):12073–12080

    Article  CAS  Google Scholar 

  • Loosmore GA, Cederwall RT (2004) Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmos Environ 38(7):993–1003

    Article  CAS  Google Scholar 

  • Maizel AC, Remucal CK (2017) Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. Environ Sci Technol 51(4):2113–2123

    Article  CAS  Google Scholar 

  • Mark G, Korth HG, Schuchmann HP, vonSonntag C (1996) The photochemistry of aqueous nitrate ion revisited. J Photoch Photobio A 101(2–3):89–103

  • Mcneill K, Canonica S (2016) Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. Environ Sci Proc Impacts 18(11):1381

  • Miller CJ, Rose AL, Waite TD (2013) Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions. Environ Sci Technol 47(2):829–835

    Article  CAS  Google Scholar 

  • Minella M, Merlo MP, Maurino V, Minero C, Vione D (2013) Transformation of 2,4,6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures. Chemosphere 90(2):306–311

    Article  CAS  Google Scholar 

  • Minero C, Chiron S, Falletti G, Maurino V, Pelizzetti E, Ajassa R, Carlotti ME, Vione D (2007) Photochemincal processes involving nitrite in surface water samples. Aquat Sci 69(1):71–85

    Article  CAS  Google Scholar 

  • Mopper K, Zhou XL (1990) Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 250(4981):661–664

    Article  CAS  Google Scholar 

  • Mostafa S, Rosario-Ortiz FL (2013) Singlet oxygen formation from wastewater organic matter. Environ Sci Technol 47(15):8179–8186

    Article  CAS  Google Scholar 

  • Motohashi N, Saito Y (1993) Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate. Chem Pharm Bull 41(10):1842–1845

    Article  CAS  Google Scholar 

  • Mullaugh KM, Kieber RJ, Willey JD, Avery GB Jr (2011) Long-term temporal variability in hydrogen peroxide concentrations in Wilmington, North Carolina USA rainwater. Environ Sci Technol 45(22):9538–9542

    Article  CAS  Google Scholar 

  • O'Sullivan DW, Neale PJ, Coffin RB, Boyd TJ, Osburn SL (2005) Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters. Mar Chem 97(1–2):14–33

    Article  CAS  Google Scholar 

  • Page SE, Sander M, Arnold WA, McNeill K (2012) Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environ Sci Technol 46(3):1590–1597

    Article  CAS  Google Scholar 

  • Richard LE, Peake BM, Rusak SA, Cooper WJ, Burritt DJ (2007) Production and decomposition dynamics of hydrogen peroxide in freshwater. Environ Chem 4(1):49–54

    Article  CAS  Google Scholar 

  • Rodgers MAJ, Snowden PT (1982) Lifetime of O2(1delta-g) in liquid water as determined by time-resolved infrared luminescence measurements. J Am Chem Soc 104(20):5541–5543

    Article  CAS  Google Scholar 

  • Rosarioortiz FL, Canonica S (2016) Probe compounds to assess the photochemical activity of dissolved organic matter [J]. Environ Sci Technol 50(23): 12532-12547

  • Sakugawa H, Kaplan IR, Shepard LS (1993) Measurements of H2O2, aldehydes and organic-acids in Los Angeles rainwater: their sources and deposition rates. Atmos Environ Part B Urban Atmos 27(2):203–219

  • Salve PR, Lohkare H, Gobre T, Bodhe G, Krupadam RJ, Ramteke DS, Wate SR (2012) Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry. Bull Environ Contam Toxicol 88(2):215–218

    Article  CAS  Google Scholar 

  • Sharpless CM, Blough NV (2014) The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environ Sci Proc Impacts 16(4):654–671

  • Sharpless CM, Aeschbacher M, Page SE, Wenk J, Sander M, McNeill K (2014) Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environ Sci Technol 48(5):2688–2696

    Article  CAS  Google Scholar 

  • Takeda K, Takedoi H, Yamaji S, Ohta K, Sakugawa H (2004) Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 20(1):153–158

    Article  CAS  Google Scholar 

  • Timko SA, Romera-Castillo C, Jaffe R, Cooper WJ (2014) Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA. Environ Sci Proc Impacts 16(4):866–878

  • Tong M, Yuan S, Ma S, Jin M, Liu D, Cheng D, Liu X, Gan Y, Wang Y (2016) Production of abundant hydroxyl radicals from oxygenation of subsurface sediments. Environ Sci Technol 50(1):214–221

    Article  CAS  Google Scholar 

  • Tratnyek PG, Hoigne J (1994) Photooxidation of 2,4,6-trimethylphenol in aqueous laboratory solutions and natural-waters: kinetics of reaction with singlet oxygen. J Photoch Photobio A 84(2):153–160

  • Twardowski MS, Boss E, Sullivan JM, Donaghay PL (2004) Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar Chem 89(1–4):69–88

    Article  CAS  Google Scholar 

  • Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu RI, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40(12):3775–3781

    Article  CAS  Google Scholar 

  • Vione D, Bagnus D, Maurino V, Minero C (2010) Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water. Environ Chem Lett 8(2):193–198

    Article  CAS  Google Scholar 

  • Voelker BM, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30(4):1106–1114

    Article  CAS  Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31(4):1004–1011

    Article  CAS  Google Scholar 

  • Warneck P, Wurzinger C (1988) Product apparent quantum yields for the 305 nm photodecomposition of NO3 in aqueous solution. J Phys Chem 92(22):6278–6283

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37(20):4702–4708

    Article  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular-oxygen in solution - an expanded and revised compilation. J Phys Chem Ref Data 24(2):663–1021

    Article  CAS  Google Scholar 

  • Witkowska A, Lewandowska A, Falkowska LM (2016) Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea. Mar Pollut Bull 104(1–2):303–312

    Article  CAS  Google Scholar 

  • Zeng T, Arnold WA (2013) Pesticide photolysis in prairie potholes: probing photosensitized processes. Environ Sci Technol 47(13):6735–6745

    Article  CAS  Google Scholar 

  • Zepp RG, Wolfe NL, Baughman GL, Hollis RC (1977) Single oxygen in natural waters. Nature 267(2):421–423

    Article  CAS  Google Scholar 

  • Zhang D, Yan S, Song W (2014) Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Environ Sci Technol 48(21):12645–12653

    Article  CAS  Google Scholar 

  • Zhou XL, Mopper K (1990) Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Mar Chem 30(1–3):71–88

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China [Grant No. 2016YFA0602002], the Natural Science Foundation of Hubei Province [Grant No. 2017CFB423], and the Opening Fund of Teaching Laboratory of China University of Geosciences [Grant No. SKJ2016060].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hong.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Liu, J., Wang, L. et al. Characterization of reactive photoinduced species in rainwater. Environ Sci Pollut Res 25, 36368–36380 (2018). https://doi.org/10.1007/s11356-018-3499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3499-4

Keywords

Navigation