Skip to main content

Advertisement

Log in

Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The anaerobic digestion of food waste (FW) often leads to acidification inhibition owing to rapid biodegradation, resulting in system instability. In this study, distillers’ grains (DG) and food waste were mixed in accordance with volatile solid (VS) ratios of 0.9:0.1, 0.85:0.15, 0.8:0.2, and 0.7:0.3. The experimental groups adopted yeast to conduct ethanol pre-fermentation and then inoculated sludge to perform anaerobic digestion, while the control groups conducted anaerobic digestion without pre-treatment. Results showed that the experimental groups had lower propionic acid concentrations; higher alkalinities, pH values and methane production rates and shorter stagnation periods than the control groups regardless of the mixing ratio. Specifically, at the DG/FW ratio of 0.7:0.3, compared with the control group, the propionic acid concentration was reduced by 59.6%, the alkalinity was increased by 41.7%. Even under high organic loading, the propionic acid and VFA did not accumulate in the system after ethanol pre-fermentation, and the anaerobic digestion system remained stable. At DG/FW ratios of 0.9:0.1 and 0.85:0.15, a synergistic effect was observed during the co-digestion of DG and FW. And, the synergistic effect of EP was relatively high, especially when the DG/FW ratio was 0.9:0.1, and methane yield increased by 26.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. https://doi.org/10.1016/j.tibtech.2010.11.006

    Article  CAS  Google Scholar 

  • Amha YM, Anwar MZ, Brower A, Jacobsen CS, Stadler LB, Webster TM, Smith AL (2017) Inhibition of anaerobic digestion processes: applications of molecular tools. Bioresour Technol 247:999–1014. https://doi.org/10.1016/j.biortech.2017.08.210

    Article  CAS  Google Scholar 

  • Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934

    Article  CAS  Google Scholar 

  • Capson-Tojo G, Trably E, Rouez M, Crest M, Steyer J-P, Delgenès J-P, Escudié R (2017) Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresour Technol 233:166–175

    Article  CAS  Google Scholar 

  • Chen X, Yuan H, Zou D, Liu Y, Zhu B, Chufo A, Jaffar M, Li X (2015) Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chem Eng J 273:254–260

    Article  CAS  Google Scholar 

  • Chiu SLH, Lo IMC (2016) Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ Sci Pollut Res 23:24435–24450. https://doi.org/10.1007/s11356-016-7159-2

    Article  CAS  Google Scholar 

  • Fuess LT, Garcia ML (2015) Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manag 162:102–114

    Article  CAS  Google Scholar 

  • Hernández M, Rodríguez M (2013) Hydrogen production by anaerobic digestion of pig manure: effect of operating conditions. Renew Energy 53:187–192. https://doi.org/10.1016/j.renene.2012.11.024

    Article  CAS  Google Scholar 

  • Janke L, Leite AF, Batista K, Silva W, Nikolausz M, Nelles M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20

    Article  CAS  Google Scholar 

  • Kafle GK, Kim SH, Sung KI (2013) Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol 127:326–336. https://doi.org/10.1016/j.biortech.2012.09.032

    Article  CAS  Google Scholar 

  • Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399

    Article  CAS  Google Scholar 

  • Koch K, Helmreich B, Drewes JE (2015) Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Appl Energy 137:250–255

    Article  CAS  Google Scholar 

  • Li Y, Hua D, Zhang J, Zhao Y, Xu H, Liang X, Zhang X (2013) Volatile fatty acids distribution during acidogenesis of algal residues with pH control. World J Microbiol Biotechnol 29:1067–1073. https://doi.org/10.1007/s11274-013-1270-z

    Article  CAS  Google Scholar 

  • Li L, He Q, Ma Y, Wang X, Peng X (2015) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresour Technol 189:113–120

    Article  CAS  Google Scholar 

  • Li Y, Jin Y, Li J, Li H, Yu Z (2016) Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Appl Energy 172:47–58

    Article  CAS  Google Scholar 

  • Liu N, Jiang J, Yan F, Xu Y, Yang M, Gao Y, Aihemaiti A, Zou Q (2018) Optimization of simultaneous production of volatile fatty acids and bio-hydrogen from food waste using response surface methodology. RSC Adv 8:10457–10464. https://doi.org/10.1039/C7RA13268A

    Article  CAS  Google Scholar 

  • Ma H-z, Xing Y, Yu M, Wang Q (2014) Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl Energy 129:89–93

    Article  CAS  Google Scholar 

  • Martín-González L, Font X, Vicent T (2013) Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochem Eng J 76:1–5. https://doi.org/10.1016/j.bej.2013.03.016

    Article  CAS  Google Scholar 

  • Pipyn P, Verstraete W (1981) Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol Bioeng 23:1145–1154. https://doi.org/10.1002/bit.260230521

    Article  CAS  Google Scholar 

  • Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q, Liu Y (2017) A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour Technol 247:1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109

    Article  CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Technical Report NREL/TP-510-42619

  • Smith AL, Shimada T, Raskin L (2017) A comparative evaluation of community structure in full-scale digesters indicates that two-phase digesters exhibit greater microbial diversity than single-phase digesters. Environ Sci-Wat Res 3:304–311. https://doi.org/10.1039/C6EW00320F

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100

    CAS  Google Scholar 

  • Tian Z, Mohan GR, Ingram L, Pullammanappallil P (2013) Anaerobic digestion for treatment of stillage from cellulosic bioethanol production. Bioresour Technol 144:387–395

    Article  CAS  Google Scholar 

  • Uçkun Kıran E, Trzcinski AP, Liu Y (2015) Platform chemical production from food wastes using a biorefinery concept. J Chem Technol Biotechnol 90:1364–1379

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853

    Article  CAS  Google Scholar 

  • Wang H, Tao Y, Temudo M, Bijl H, Kloek J, Ren N, van Lier JB, de Kreuk M (2015) Biomethanation from enzymatically hydrolyzed brewer’s spent grain: impact of rapid increase in loadings. Bioresour Technol 190:167–174

    Article  CAS  Google Scholar 

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 19:63–102

    Article  CAS  Google Scholar 

  • Wu C, Wang Q, Yu M, Zhang X, Song N, Chang Q, Gao M, Sonomoto K (2015) Effect of ethanol pre-fermentation and inoculum-to-substrate ratio on methane yield from food waste and distillers’ grains. Appl Energy 155:846–853

    Article  CAS  Google Scholar 

  • Wu C, Huang Q, Yu M, Ren Y, Wang Q, Sakai K (2018) Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis. Bioresour Technol 251:40–48. https://doi.org/10.1016/j.biortech.2017.12.020

    Article  CAS  Google Scholar 

  • Yang Y-Q, Shen D-S, Li N, Xu D, Long Y-Y, Lu X-Y (2013) Co-digestion of kitchen waste and fruit–vegetable waste by two-phase anaerobic digestion. Environ Sci Pollut Res 20:2162–2171. https://doi.org/10.1007/s11356-012-1414-y

    Article  CAS  Google Scholar 

  • Yu M, Wu C, Wang Q, Sun X, Ren Y, Li Y-Y (2018) Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Bioresour Technol 248:187–193

    Article  CAS  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392. https://doi.org/10.1016/j.rser.2014.05.038

    Article  CAS  Google Scholar 

  • Zhang D, Fu X, Jia S, Dai L, Wu B, Dai X (2016a) Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement. Environ Sci Pollut Res 23:1492–1504. https://doi.org/10.1007/s11356-015-5371-0

    Article  CAS  Google Scholar 

  • Zhang Q, Hu J, Lee D-J (2016b) Biogas from anaerobic digestion processes: research updates. Renew Energy 98:108–119

    Article  CAS  Google Scholar 

  • Zhao N, Yu M, Wang Q, Song N, Che S, Wu C, Sun X (2016) Effect of ethanol and lactic acid pre-fermentation on putrefactive bacteria suppression, hydrolysis, and methanogenesis of food waste. Energy Fuel 30:2982–2989

    Article  CAS  Google Scholar 

  • Zhen G, Lu X, Kobayashi T, Li Y-Y, Xu K, Zhao Y (2015) Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: performance assessment and kinetic analysis. Appl Energy 148:78–86

    Article  CAS  Google Scholar 

  • Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341

    Article  CAS  Google Scholar 

  • Zhou Q, Yuan H, Liu Y, Zou D, Zhu B, Chufo WA, Jaffar M, Li X (2015) Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. Bioresour Technol 179:611–614

    Article  CAS  Google Scholar 

  • Ziganshin AM, Schmidt T, Scholwin F, Il’inskaya ON, Harms H, Kleinsteuber S (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89:2039–2052

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant 51578063) and the National Key Technology R&D Program (2014BAC24B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Gao, M., Wang, L. et al. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation. Environ Sci Pollut Res 25, 30281–30291 (2018). https://doi.org/10.1007/s11356-018-3027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3027-6

Keywords

Navigation