Skip to main content

Advertisement

Log in

Investigation on spatiotemporal distribution of aerosol optical properties over two oceanic regions surrounding Indian subcontinent during summer monsoon season

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Columnar spectral aerosol optical depths (AODs) and total suspended particulate matter (TSPM) concentrations were collected on board the Oceanographic Research Vessel (ORV) of Sagar Kanya (SK) during 7–21 June 2014 (SK-313) and 31 July–14 August 2015 (SK-323) over the Arabian Sea (AS) and Bay of Bengal (BoB), respectively, for the two successive years during summer monsoon season. AOD measured at 500 nm (AOD500) varied significantly from 0.08 to 0.66 (0.07 to 0.60), with a mean of 0.48 ± 0.13 (0.34 ± 0.13) over the BoB (AS) during SK-313 (SK-323). It simply implies that aerosol load was higher over BoB, not variability as the standard deviations of AOD over both oceans are identical (0.13). Daily AOD500 ranged between 0.15 and 0.60 accounted for 70–75% of the total occurrences over two oceanic regions. Mean Ångström exponent (α or alpha) and Ångström turbidity coefficient (β or beta) were found to be 0.43 ± 0.17 (0.39 ± 0.19) and 0.37 ± 0.15 (0.27 ± 0.13), respectively, which are higher over the AS during SK-323 (SK-313) that indicate predominance of coarse-relative to fine-mode particles. On the other hand, the spectral curvature and second derivative of alpha (α′) also showed significant contribution of coarse-mode particles over fine during the two campaigns. Further, column aerosol size distribution (CSD) derived from the King’s inversion also exhibited bimodal distribution with a predominant peak observed in the coarse mode (~1.0 μm) compared to the fine mode at a geometric mean radius at ~0.1 μm over two oceans. The observed data showed that the two marine regions are significantly influenced by various types of aerosols with a predominance of mixed type (MT) of aerosols. From the morphological study, it is inferred that the particles are a flake, spherical, irregular, and in flower and aggregated shapes conducted for the TSPM samples collected during SK-323 over the AS. Finally, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to study the impact of long-distance transported aerosols and identify their sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ali K, Trivedi DK, Sahu S (2015) Physico-chemical characterization of total suspended particulate matter over two coastal stations of Antarctica and adjoining ocean. Atmos Environ 122:531–540

    Article  CAS  Google Scholar 

  • Ångström A (1964) The parameters of atmospheric turbidity. Tellus 16(1):64–75

    Article  Google Scholar 

  • Basha S, Jhala J, Thorat R, Goel S, Trivedi R, Shah K, Menon G, Gaur P, Mody KH, Jha B (2010) Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmos Res 97(1–2):257–265

    Article  CAS  Google Scholar 

  • Begam GR, Vachaspati CV, Ahammed YN, Kumar KR, Reddy RR, Sharma SK, Saxena M, Mandal TK (2017) Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ Sci Pollut Res 24:1719–1734

    Article  CAS  Google Scholar 

  • Bernabé JM, Carretero MI, Galan E (2005) Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain). Atmos Environ 39(36):6777–6789

    Article  CAS  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T (2017) Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmos Res 197:277–288

    Article  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T (2018a) Spatial variations and trends in AOD climatology over East Africa during 2002–2016: a comparative study using three satellite data sets. Int J Climatol 38:1221–1240. https://doi.org/10.1002/joc.5446

    Article  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T (2018b) Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: source identification, modification and aerosol type discrimination. Atmos Environ 177:234–252

    Article  CAS  Google Scholar 

  • Cachorro VE, Romero PM, Toledano C, Cuevas E, De Frutos AM (2004) The fictitious diurnal cycle of aerosol optical depth: a new approach for “in situ” calibration and correction of AOD data series. Geophys Res Lett 31:L12106. https://doi.org/10.1029/2004GL019651

    Article  Google Scholar 

  • Campos-Ramos A, Aragón-Piña A, Galindo-Estrada I, Querol X, Alastuey A (2009) (2009). Characterization of atmospheric aerosols by SEM in a rural area in the western part of México and its relation with different pollution sources. Atmos Environ 43(39):6159–6167

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single Particle Lagragian Integrated Trajectory). Air Resources Laboratory, National Oceanic and Atmospheric Administration, Silver Spring, Md available at: http://www.arl.noaa.gov/ready/hysplit4.html

  • Dumka UC, Sagar R, Pant P (2009) Retrieval of columnar aerosol size distributions from spectral attenuation measurements over central Himalayas. Aerosol Air Qual Res 9:344–351

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O'neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349

    Article  Google Scholar 

  • Georgoulias AK, Alexandri G, Kourtidis KA, Lelieveld J, Zanis P, Amiridis V (2016) Differences between the MODIS collection 6 and 5.1 aerosol datasets over the greater Mediterranean region. Atmos Environ 147:310–319

    Article  CAS  Google Scholar 

  • Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson RR, Thompson AM, Schafer JS. (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res, Atmos 117(D17)

  • Gobbi GP, Kaufman YJ, Koren I, Eck TF (2007) Classification of aerosol properties derived from AERONET direct sun data. Atmos Chem Phys 7:453–458

    Article  CAS  Google Scholar 

  • Gogoi MM, Krishna Moorthy K, Babu SS, Bhuyan PK (2009) Climatology of columnar aerosol properties and the influence of synoptic conditions: first-time results from the northeastern region of India. J Geophys Res 114:D08202. https://doi.org/10.1029/2008JD010765

    Article  Google Scholar 

  • He Q, Zhang M, Huang B (2016) Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos Environ 129:79–90

    Article  CAS  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET–A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569

    Article  Google Scholar 

  • Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC (2013) Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118(16):9296–9315

    Article  Google Scholar 

  • Hu K, Kumar KR, Kang N, Boiyo R, Wu J (2018) Spatial-temporal characteristics of aerosols and changes in trends over China with recent MODIS collection 6 satellite data. Environ Sci Pollut Res 25(7):6909–6927

    Article  Google Scholar 

  • Ichoku C, Chu DA, Mattoo S, Kaufman YJ, Remer LA, Tanré D, Slutsker I, Holben BN (2002) A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys Res Lett 29. https://doi.org/10.1029/2001GL013206

  • Kalapureddy MC, Devara PC (2008) Characterization of aerosols over oceanic regions around India during pre-monsoon 2006. Atmos Environ 42:6816–6827

    Article  CAS  Google Scholar 

  • Kalapureddy MC, Kaskaoutis DG, Ernest Raj P, Devara PC, Kambezidis HD, Kosmopoulos PG, Nastos PT (2009) Identification of aerosol type over the Arabian Sea in the pre monsoon season during the ICARB campaign. J Geophys Res 114:D17203. https://doi.org/10.1029/2009JD011826

    Article  Google Scholar 

  • Kang N, Kumar KR, Yu X, Yin Y (2016) Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environ Sci Pollut Res 23(17):17532–17550

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD (2006) Investigation on the wavelength dependence of the aerosol optical depth in the Athens area. Quart J Roy Meteor Soc 132:2217–2234

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KV (2007) Aerosol climatology: dependence of the angstrom exponent on wavelength over four AERONET sites. Atmos Chem Phys Discuss 7:7347–7397

    Article  Google Scholar 

  • Kaskaoutis DG, Kalapureddy MC, Krishna Moorthy K, Devara PC, Nastos PT, Kosmopoulos PG, Kambezidis HD (2010) Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs. Atmos Chem Phys 10:4893–4908

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Kharol SK, Sinha PR, Singh RP, Kambezidis HD, Sharma AR, Badarinath KV (2011) Extremely large anthropogenic aerosol component over the bay of Bengal in winter. Atmos Chem Phys 11:7097–7117

    Article  CAS  Google Scholar 

  • Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067

    Article  CAS  Google Scholar 

  • Kedia S, Ramachandran S (2008) Latitudinal and longitudinal variation in aerosol characteristics from sun photometer and MODIS over the bay of Bengal and Arabian Sea during ICARB. J Earth Syst Sci 117(S1):375–388

    Article  Google Scholar 

  • Kharol SK, Badarinath KV, Sharma AR, Kaskaoutis DG, Kambezidis HD (2011) Multiyear analysis of Terra/aqua MODIS aerosol optical depth and ground observations over tropical urban region of Hyderabad, India. Atmos Environ 45:1532–1542

    Article  CAS  Google Scholar 

  • King MD (1982) Sensitivity of constrained linear inversion to the selection of Lagrange multiplier. J Atmos Sci 39:1356–1369

    Article  Google Scholar 

  • King MD, Byrne DM, Herman BM, Reagan JA (1978) Aerosol size distributions obtained by inversion of spectral optical depth measurements. J Atmos Sci 35:2153–2167

    Article  Google Scholar 

  • Kumar KR, Narasimhulu K, Reddy RR, Gopal KR, Reddy LS, Balakrishnaiah G, Moorthy KK, Babu SS (2009) Temporal and spectral characteristics of aerosol optical depths in a semi-arid region of southern India. Sci Total Environ 407:2673–2688

    Article  CAS  Google Scholar 

  • Kumar KR, Narasimhulu K, Balakrishnaiah G, Reddy BS, Gopal KR, Reddy RR, Reddy LS, Moorthy KK, Babu SS, Dutt CB (2011) Spatial heterogeneities in aerosol properties over bay of Bengal inferred from ship-borne and MODIS observations during W-ICARB cruise campaign: implications to radiative forcing. Atmos Environ 45:404–412

    Article  CAS  Google Scholar 

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR (2013) Ship-borne measurements of columnar and surface aerosol loading over the bay of Bengal during W-ICARB campaign: role of air mass transport, latitudinal and longitudinal gradients. Aerosol Air Qual Res 13:818–837

    Article  Google Scholar 

  • Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ 117(117):9–18

    Article  CAS  Google Scholar 

  • Kumar KR, Kang N, Sivakumar V, Griffith D (2017) Temporal characteristics of columnar aerosol optical properties and radiative forcing (2011-2015) measured at AERONET’s Pretoria_CSIR_DPSS site in South Africa. Atmos Environ 165:274–289

    Article  CAS  Google Scholar 

  • Kumar KR, Kang N, Yin Y (2018a) Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China. Int J Climatol 38(1):320–336. https://doi.org/10.1002/joc.5178

    Article  Google Scholar 

  • Kumar KR, Boiyo R, Madina A, Kang N (2018b) A 13-year climatological study on the variations of aerosol and cloud properties over Kazakhstan from remotely sensed satellite observations. J Atmos Solar-Terres Phys 179:55–68

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420

    Article  CAS  Google Scholar 

  • Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034

    Article  Google Scholar 

  • Levy RC, Munchak LA, Mattoo S, Patadia F, Remer LA, Holz RE (2015) Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos Meas Tech 8:4083–4110

    Article  Google Scholar 

  • Mehta M, Singh R, Singh A, Singh N (2016) Recent global aerosol optical depth variations and trends—a comparative study using MODIS and MISR level 3 datasets. Remote Sens Environ 181:137–150

    Article  Google Scholar 

  • Moorthy KK, Satheesh SK (2000) Characteristics of aerosols over a remote island, Minicoy in the Arabian Sea: optical properties and retrieved size characteristics. Quart J Roy Meteor Soc 126:81–109

    Google Scholar 

  • Moorthy KK, Nair PR, Murthy BK (1991) Size distribution coastal aerosols: effects of local sources and sinks. J Appl Meteorol 30:844–852

    Article  Google Scholar 

  • Moorthy KK, Babu SS, Sunilkumar SV, Gupta PK, Gera BS, (2004) Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys Res Lett 31(22)

  • Moorthy KK, Babu SS, Satheesh SK (2005) Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign. J Atmos Sci 62:192–206

    Article  Google Scholar 

  • Moorthy KK, Satheesh SK, Babu SS, Dutt CBS (2008) An integrated campaign for the multiplier. J Atmos Sci 39:1356–1369 https://doi.org/10.1175/1520-0469

    Google Scholar 

  • Moorthy KK, Nair VS, Babu SS, Satheesh SK (2009) Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: implications for radiative forcing. Quart J Roy Meteor Soc 135:2131–2145

    Article  Google Scholar 

  • Moorthy KK, Beegum SN, Babu SS, Smirnov A, John SR, Kumar KR, Narasimhulu K, Dutt CB, Nair VS (2010) Optical and physical characteristics of bay of Bengal aerosols during W-ICARB: spatial and vertical heterogeneities in the marine atmospheric boundary layer and in the vertical column. J Geophys Res 115:D24213. https://doi.org/10.1029/2010JD014094

    Article  Google Scholar 

  • Morys M, Mims FM, Hagerup S, Anderson SE, Baker A, Kia J, Walkup T (2001) Design, calibration, and performance of Microtops II handheld ozone monitor and sun photometer. J Geophys Res 106:14573–14582

    Article  Google Scholar 

  • Pace G, Sarra AD, Meloni D, Piacentino S, Chamard P (2006) Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos Chem Phys 6:697–713

    Article  CAS  Google Scholar 

  • Patel PN, Dumka UC, Kaskaoutis DG, Babu KN, Mathur AK (2017) Optical and radiative properties of aerosols over Desalpar, a remote site in western India: source identification, modification processes and aerosol type discrimination. Sci Total Environ 575:612–627

    Article  CAS  Google Scholar 

  • Pathak B, Bhuyan PK, Gogoi M, Bhuyan K (2012) Seasonal heterogeneity in aerosol types over Dibrugarh-north-eastern India. Atmos Environ 47:307–315

    Article  CAS  Google Scholar 

  • Pipal AS, Jan R, Satsangi PG, Tiwari S, Taneja A (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual Res 14:1685–1700

    Article  CAS  Google Scholar 

  • Ramachandran S (2004) Spectral aerosol optical characteristics during the north east monsoon over the Arabian Sea and the tropical Indian Ocean: aerosol optical depths and their variabilities. J Geophys Res 109:D19207. https://doi.org/10.1029/2003JD004476

    Article  Google Scholar 

  • Ramagopal K, SMd A, Balakrishnaiah G, Reddy KRO, Reddy NSK, Lingaswamy A, Kumari SP, Devi KU, Reddy RR, Babu SS (2015) Columnar-integrated aerosol optical properties and classification of different aerosol types over the semi-arid region, Anantapur, Andhra Pradesh. Sci Total Environ 527–528:507–519

    Google Scholar 

  • Ramanathan V (2001) Indian Ocean experiment: an integrated analysis of the climate and the great indo- Asian haze. J Geophys Res 106:28371–28398

    Article  CAS  Google Scholar 

  • Reddy KR, Balakrishnaiah G, Gopal KR, Reddy NS, Rao TC, Reddy TL, Hussain SN, Reddy MV, Reddy RR, Boreddy SK, Babu SS (2016) Long-term (2007–2013) observations of columnar aerosol optical properties and retrieved size distributions over Anantapur, India using multi-wavelength solar radiometer. Atmos Environ 142:238–250

    Article  CAS  Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Matto S, Chu DA, Martins JV (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Satheesh SK, Moorthy KK (1997) Aerosol characteristics over coastal regions of the Arabian Sea. Tellus B 49:417–428

    Article  Google Scholar 

  • Satheesh SK, Ramanathan V (2000) Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405:60–63

    Article  CAS  Google Scholar 

  • Satheesh SK, Moorthy KK, Murthy BV (1998) Spatial gradients in aerosol characteristics over the Arabian Sea and Indian Ocean. J Geophys Res 103(D20):26,183–26,192. https://doi.org/10.1029/98JD00803

    Article  CAS  Google Scholar 

  • Satheesh SK, Ramanathan V, Li-Jones X, Lobert JM, Podgorny IA, Prospero JM, Holben BN, Loeb NG (1999) A model for the natural and anthropogenic aerosols for the tropical Indian Ocean derived from Indian Ocean experiment data. J Geophys Res 104(D22):27421–27440

    Article  CAS  Google Scholar 

  • Satheesh SK, Ramanathan V, Holben BN, Moorthy KK, Loeb NG, Maring H, Prospero JM, Savoie D (2002) Chemical, microphysical, and radiative effects of Indian Ocean aerosols. J Geophys Res 107:4725. https://doi.org/10.1029/2002JD002463

    Article  CAS  Google Scholar 

  • Satheesh SK, Moorthy KK, Kaufman YJ, Takemura T (2006) Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea. Meteorog Atmos Phys 91:45–62

    Article  Google Scholar 

  • Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ, Meister G (2015) Effect of MODIS Terra radiometric calibration improvements on collection 6 deep blue aerosol products: validation and Terra/aqua consistency. J Geophys Res Atmos 120(23):12157–12174

    Article  Google Scholar 

  • Schuster GL, Dubovik O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207. https://doi.org/10.1029/2005JD006328

    Article  CAS  Google Scholar 

  • Shaw GE (1980) Absorption continuum in the near IR near 1 μm. Appl Opt 19:480–482

    Article  Google Scholar 

  • Tanré D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971–16988

    Article  Google Scholar 

  • Vachaspati CV, Begam GR, Ahammed YN, Kumar KR, Reddy RR (2018) Characterization of aerosol optical properties and model computed radiative forcing over a semi-arid region, Kadapa in India. Atmos Res 209:36–49

    Article  Google Scholar 

  • Vinoj V, Satheesh SK (2003) Measurements of aerosol optical depth over the Arabian Sea during summer monsoon season. Geophys Res Lett 30(5):1263. https://doi.org/10.1029/2002GL016664

    Article  Google Scholar 

  • Yu X, Lü R, Kumar KR, Ma J, Zhang Q, Jiang Y, Kang N, Yang S, Wang J, Li M (2016) Dust aerosol properties and radiative forcing observed in spring during 2001–2014 over urban Beijing, China. Environ Sci Pollut Res 23:15432–15442

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (G. Reshma Begam) sincerely thanks the Department of Science and Technology (DST), New Delhi, for awarding fellowship under the INSPIRE fellowship Programme. We are particularly grateful to Dr. K. Krishna Moorthy, ISRO Head Quarters, Bangalore, and Dr. S. Suresh Babu SPL, Trivandrum, for their constant encouragement and support in learning new things through fruitful discussions. Authors are also thankful to the National Centre for Antarctic and Ocean Research (NCAOR) for giving the opportunity and providing onboard facilities in the ORV Sagar Kanya during the two cruises for carrying out scientific work. We greatly acknowledge the help and support rendered by crew members of SK-313 and SK-323 in allowing us to conduct measurements and collect samples over the BoB and AS. We also thank the NOAA Air Resources Laboratory for providing the HYSPLIT transport-dispersion model and NCEP/NCAR of Climate Diagnostic Centre, Boulder, Colorado, for providing the reanalysis data used in this study. The authors would like to acknowledge Prof. Gerhard Lammel, Editor-in-Chief of the journal, and the three anonymous reviewers for their helpful comments and constructive suggestions towards the improvement of an earlier version of the manuscript.

Funding

This work was financially supported by the Indian Space Research Organization–Geosphere-Biosphere Programme (ISRO-GBP) under Aerosol Radiative Forcing over India (ARFI) project. One of the corresponding authors (K. R. Kumar) acknowledges the National Natural Science Foundation of China (NSFC) (Grant No. 91644224) for the financial support to execute work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadiki Nazeer Ahammed or Kanike Raghavendra Kumar.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachaspati, C.V., Begam, G.R., Ahammed, Y.N. et al. Investigation on spatiotemporal distribution of aerosol optical properties over two oceanic regions surrounding Indian subcontinent during summer monsoon season. Environ Sci Pollut Res 25, 27039–27058 (2018). https://doi.org/10.1007/s11356-018-2682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2682-y

Keywords

Navigation