Skip to main content
Log in

Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The electro-oxidation treatment of aqueous solution containing diclofenac (DCF) on a Ti/RuO2–TiO2 electrode in the presence of multi-walled carbon nanotubes (MWCNTs) was studied in a three-dimensional electrochemical (3DE) reactor. The response surface methodology (RSM) based on central composite design (CCD) was utilized to determine the influence of different factors. The results revealed that the obtained polynomial experimental model had a high coefficient of determination (R2 = 0.9762) based on analysis of variance. The optimum condition for the removal of DCF by the 3DE process was obtained with the initial pH of 3.8, the initial DCF concentration of 4 mg/L, the current density of 20 mA/cm2, the particle electrode concentration of 70 mg/L, and the electrolysis time of 85 min. The quadratic model developed for DCF removal and subsequently the analysis of the F value illustrated that the initial pH was the most important factor in the removal of DCF. The comparative experiments between electrochemical processes showed the high electrocatalytic activity and removal efficiency of the 3DE reactor with the MWCNT particle electrode. The results also showed that the Ti/RuO2–TiO2 electrode, in addition to its high stability, had a very good electrocatalytic activity in the 3D reactor. The stability and reusability test proved that MWCNTs, as a particle electrode, had a potential to improve the long-term electrocatalytic degradation of DCF in the aqueous solutions. Based on the identified intermediate compounds along with the results of other studies, a possible pathway for the electrochemical oxidation of DCF by the 3DE process catalyzed with MWCNTs was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdallah R, Geneste F, Labasque T, Djelal H, Fourcade F, Amrane A, Taha S, Floner D (2014) Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell. J Electroanal Chem 727:148–153

    Article  CAS  Google Scholar 

  • Aziz KHH, Miessner H, Mueller S, Kalass D, Moeller D, Khorshid I, Rashid MAM (2017) Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem Eng J 313:1033–1041

    Article  CAS  Google Scholar 

  • Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl Catal B Environ 134:93–102

    Article  CAS  Google Scholar 

  • Baghdadi M, Ghaffari E, Aminzadeh B (2016) Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J Environ Chem Eng 4:3309–3321

    Article  CAS  Google Scholar 

  • Bastakoti BP, Salunkhe RR, Ye J, Yamauchi Y (2014) Direct synthesis of a mesoporous TiO 2–RuO 2 composite through evaporation-induced polymeric micelle assembly. Phys Chem Chem Phys 16:10425–10428

    Article  CAS  Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 2012:1–8

    Article  CAS  Google Scholar 

  • Bina B, Amin MM, Rashidi A, Pourzamani H (2014) Water and wastewater treatment from BTEX by carbon nanotubes and Nano-Fe. Water Res 41:719–727

    Article  CAS  Google Scholar 

  • Brillas E, Calpe JC, Casado J (2000) Mineralization of 2, 4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262

    Article  CAS  Google Scholar 

  • Chen W, Li X, Pan Z, Ma S, Li L (2016) Effective mineralization of diclofenac by catalytic ozonation using Fe-MCM-41 catalyst. Chem Eng J 304:594–601

    Article  CAS  Google Scholar 

  • Chong S, Zhang G, Zhang N, Liu Y, Huang T, Chang H (2017) Diclofenac degradation in water by FeCeOx catalyzed H2O2: influencing factors, mechanism and pathways. J Hazard Mater 334:150–159

    Article  CAS  Google Scholar 

  • Dobrin D, Bradu C, Magureanu M, Mandache N, Parvulescu V (2013) Degradation of diclofenac in water using a pulsed corona discharge. Chem Eng J 234:389–396

    Article  CAS  Google Scholar 

  • Du L, Wu J, Hu C (2012) Electrochemical oxidation of rhodamine B on RuO2–PdO–TiO2/Ti electrode. Electrochim Acta 68:69–73

    Article  CAS  Google Scholar 

  • Espino-Estévez M, Fernández-Rodríguez C, González-Díaz OM, Araña J, Espinós J, Ortega-Méndez J, Doña-Rodríguez JM (2016) Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem Eng J 298:82–95

    Article  CAS  Google Scholar 

  • Fang Z-D, Zhang K, Liu J, Fan J-Y, Zhao Z-W (2017) Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts. Water Sci Eng 10:326–333

    Article  Google Scholar 

  • Gao G, Zhang Q, Hao Z, Vecitis CD (2015) Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton. Environ Sci Technol 49:2375–2383

    Article  CAS  Google Scholar 

  • Gökkuş Ö, Yıldız YŞ (2016) Application of electro-Fenton process for medical waste sterilization plant wastewater. Desalin Water Treatt 57:24934–24945

    Article  CAS  Google Scholar 

  • Hazime R, Nguyen Q, Ferronato C, Huynh T, Jaber F, Chovelon J-M (2013) Optimization of imazalil removal in the system UV/TiO2/K2S2O8 using a response surface methodology (RSM). Appl Catal B Environ 132:519–526

    Article  CAS  Google Scholar 

  • Hoseinieh S, Ashrafizadeh F, Maddahi M (2010) A comparative investigation of the corrosion behavior of RuO2–IrO2–TiO2 coated titanium anodes in chloride solutions. J Electrochem Soc 157:E50–E56

    Article  CAS  Google Scholar 

  • Hou B, Ren B, Deng R, Zhu G, Wang Z, Li Z (2017) Three-dimensional electro-Fenton oxidation of N-heterocyclic compounds with a novel catalytic particle electrode: high activity, wide pH range and catalytic mechanism. RSC Adv 7:15455–15462

    Article  CAS  Google Scholar 

  • Iranpour F, Pourzamani HR, Mengelizadeh N, Bahrami P, Mohammadi H (2018) Application of response surface methodology for optimization of reactive black 5 removal by three dimensional electro-Fenton process. J Environ Chem Eng 6:3418–3435

    Article  CAS  Google Scholar 

  • Jaafarzadeh N, Barzegar G, Ghanbari F (2017) Photo assisted electro-peroxone to degrade 2, 4-D herbicide: the effects of supporting electrolytes and determining mechanism. Process Saf Environ Prot 111:520–528

    Article  CAS  Google Scholar 

  • Kaur P, Kushwaha JP, Sangal VK (2017) Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode. Process Saf Environ Prot 111:13–22

    Article  CAS  Google Scholar 

  • Khataee A, Akbarpour A, Vahid B (2014) Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode. J Taiwan Inst Chem Eng 45:930–936

    Article  CAS  Google Scholar 

  • Kim S, Choi SK, Yoon BY, Lim SK, Park H (2010) Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb–SnO2/Ti anodes for water treatment. Appl Catal B Environ 97:135–141

    Article  CAS  Google Scholar 

  • Kong W, Wang B, Ma H, Gu L (2006) Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. J Hazard Mater 137:1532–1537

    Article  CAS  Google Scholar 

  • Körbahti BK, Demirbüken P (2017) Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode: reaction kinetics and process optimization with response surface methodology. Front Chem 5:75

    Article  CAS  Google Scholar 

  • Kudlek E, Dudziak M, Bohdziewicz J (2016) Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix. Water 8:532

    Article  CAS  Google Scholar 

  • Li M, Zhao F, Sillanpää M, Meng Y, Yin D (2015) Electrochemical degradation of 2-diethylamino-6-methyl-4-hydroxypyrimidine using three-dimensional electrodes reactor with ceramic particle electrodes. Sep Purif Technol 156:588–595

    Article  CAS  Google Scholar 

  • Li X-Y, Xu J, Cheng J-P, Feng L, Shi Y-F, Ji J (2017) TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor. Sep Purif Technol 187:303–310

    Article  CAS  Google Scholar 

  • Liu W, Ai Z, Zhang L (2012) Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J Hazard Mater 243:257–264

    Article  CAS  Google Scholar 

  • Lu X, Shao Y, Gao N, Chen J, Zhang Y, Xiang H, Guo Y (2017) Degradation of diclofenac by UV-activated persulfate process: kinetic studies, degradation pathways and toxicity assessments. Ecotoxicol Environ Saf 141:139–147

    Article  CAS  Google Scholar 

  • Luo M, Yuan S, Tong M, Liao P, Xie W, Xu X (2014) An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants. Water Res 48:190–199

    Article  CAS  Google Scholar 

  • Manu B (2012) Degradation kinetics of diclofenac in water by Fenton’s oxidation. Sustain Energy Environ 3:173–176

    Google Scholar 

  • Mao R, Zhao X, Lan H, Liu H, Qu J (2015) Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. Water Res 77:1–12

    Article  CAS  Google Scholar 

  • Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Article  CAS  Google Scholar 

  • Mounia AY, Djilali Z (2012) Electrochemical incineration of refractory organic pollution by electrochmically generated Fenton’s reagent. J Chil Chem Soc 57:1388–1393

    Article  CAS  Google Scholar 

  • Mousavi SA, Nazari S (2017) Applying response surface methodology to optimize the Fenton oxidation process in the removal of reactive red 2. Pol J Environ Stud 26:765–772

    Article  CAS  Google Scholar 

  • Naddeo V, Belgiorno V, Kassinos D, Mantzavinos D, Meric S (2010) Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. Ultrason Sonochem 17:179–185

    Article  CAS  Google Scholar 

  • Näslund L-Å, Sánchez-Sánchez CM, Ingason ÁS, Bäckström J, Herrero E, Rosen J, Holmin S (2013) The role of TiO2 doping on RuO2-coated electrodes for the water oxidation reaction. J Phys Chem C 117:6126–6135

    Article  CAS  Google Scholar 

  • Niu J, Maharana D, Xu J, Chai Z, Bao Y (2013) A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2, 4-dichlorophenol in aqueous solution. J Environ Sci 25:1424–1430

    Article  CAS  Google Scholar 

  • Parsa JB, Merati Z, Abbasi M (2013) Modeling and optimizing of electrochemical oxidation of CI reactive Orange 7 on the Ti/Sb–SnO2 as anode via response surface methodology. J Ind Eng Chem 19:1350–1355

    Article  CAS  Google Scholar 

  • Patel PS, Bandre N, Saraf A, Ruparelia JP (2013) Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Process Eng 51:430–435

    CAS  Google Scholar 

  • Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970–4978

    Article  CAS  Google Scholar 

  • Qiao Y, Li C, Chen X, Jiao C (2012) Effect of electrochemical oxidation on carbon nanotube electrodes of electric double layer capacitors. Sci China Technol Sci 55:913–920

    Article  CAS  Google Scholar 

  • Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307

    Article  CAS  Google Scholar 

  • Santos ID, Gabriel SB, Afonso JC, Dutra AJB (2011) Preparation and characterization of Ti/SnO2-Sb electrode by Pechini’s method for phenol oxidation. Mater Res 14:408–416

    Article  CAS  Google Scholar 

  • Santos MJ, Medeiros MC, Oliveira TM, Morais CC, Mazzetto SE, Martínez-Huitle CA, Castro SS (2016) Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds. Electrochim Acta 212:95–101

    Article  CAS  Google Scholar 

  • Shen L, Yan P, Guo X, Wei H, Zheng X (2014) Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe 3 O 4. Arab J Sci Eng 39:6659–6664

    Article  CAS  Google Scholar 

  • Shen B, Wen X-h, Huang X (2017) Enhanced removal performance of estriol by a three-dimensional electrode reactor. Chem Eng J 327:597–607

    Article  CAS  Google Scholar 

  • Shestakova M, Vinatoru M, Mason TJ, Sillanpää M (2015) Sonoelectrocatalytic decomposition of methylene blue using Ti/Ta2O5–SnO2 electrodes. Ultrason Sonochem 23:135–141

    Article  CAS  Google Scholar 

  • Sowmiya S, Gandhimathi R, Ramesh ST, Nidheesh PV (2016) Granular activated carbon as a particle electrode in three-dimensional electrochemical treatment of reactive black B from aqueous solution. Environ Prog Sustain Energy 35:1616–1622

    Article  CAS  Google Scholar 

  • Sun Y, Li P, Zheng H, Zhao C, Xiao X, Xu Y, Sun W, Wu H, Ren M (2017) Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor. Chem Eng J 308:1233–1242

    Article  CAS  Google Scholar 

  • Thokchom B, Kim K, Park J, Khim J (2015) Ultrasonically enhanced electrochemical oxidation of ibuprofen. Ultrason Sonochem 22:429–436

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Liu G, Xie Y, Gao S (2015a) Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation. Sci Total Environ 506:252–258

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Xie Y, Ni T, Liu G (2015b) Oxidative removal of diclofenac by chlorine dioxide: reaction kinetics and mechanism. Chem Eng J 279:409–415

    Article  CAS  Google Scholar 

  • Wei L, Guo S, Yan G, Chen C, Jiang X (2010) Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochim Acta 55:8615–8620

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A, Pokomeda K (2014) Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol 160:150–160

    Article  CAS  Google Scholar 

  • Wu F-H, Zhao G-C, Wei X-W (2002) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Commun 4:690–694

    Article  CAS  Google Scholar 

  • Wu X, Yang X, Wu D, Fu R (2008) Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor. Chem Eng J 138:47–54

    Article  CAS  Google Scholar 

  • Xiong YA, Strunk PJ, Xia H, Zhu X, Karlsson HT (2001) Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Res 35:4226–4230

    Article  CAS  Google Scholar 

  • Xiong Y, Zhong Q, An T, Li Y, Cha Z, Zhu X (2002) Removal of cyanide from dilute solution using a cell with three-phase three-dimensional electrode. J Environ Sci Health A 37:715–724

    Article  Google Scholar 

  • Yan L, Ma H, Wang B, Wang Y, Chen Y (2011) Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination 276:397–402

    Article  CAS  Google Scholar 

  • Yáñez-Sedeño P, Pingarrón JM, Riu J, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. Trends Anal Chem 29:939–953

    Article  CAS  Google Scholar 

  • Yang J, Wang J, Jia J (2009) Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor. Environ Sci Technol 43:3796–3802

    Article  CAS  Google Scholar 

  • Yousefpour M, Shokuhy A (2012) Electrodeposition of TiO2–RuO2–IrO2 coating on titanium substrate. Superlattice Microst 51:842–853

    Article  CAS  Google Scholar 

  • Yue L, Wang K, Guo J, Yang J, Luo X, Lian J, Wang L (2014) Enhanced electrochemical oxidation of dye wastewater with Fe2O3 supported catalyst. J Ind Eng Chem 20:725–731

    Article  CAS  Google Scholar 

  • Yue L, Wang L, Shi F, Guo J, Yang J, Lian J, Luo X (2015) Application of response surface methodology to the decolorization by the electrochemical process using FePMo12O40 catalyst. J Ind Eng Chem 21:971–979

    Article  CAS  Google Scholar 

  • Yue H, Xue L, Chen F (2017) Efficiently electrochemical removal of nitrite contamination with stable RuO2-TiO2/Ti electrodes. Appl Catal B Environ 206:683–691

    Article  CAS  Google Scholar 

  • Zgoła-Grześkowiak A (2010) Application of DLLME to isolation and concentration of non-steroidal anti-inflammatory drugs in environmental water samples. Chromatographia 72:671–678

    Article  CAS  Google Scholar 

  • Zhang H, Li Y, Wu X, Zhang Y, Zhang D (2010) Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor. Waste Manag 30:2096–2102

    Article  CAS  Google Scholar 

  • Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467

    Article  CAS  Google Scholar 

  • Zhang N, Li J, Liu G, Chen X, Jiang K (2017) Photodegradation of diclofenac in seawater by simulated sunlight irradiation: the comprehensive effect of nitrate, Fe (III) and chloride. Mar Pollut Bull 117:386–391

    Article  CAS  Google Scholar 

  • Zhao H-Z, Sun Y, Xu L-N, Ni J-R (2010) Removal of acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway. Chemosphere 78:46–51

    Article  CAS  Google Scholar 

  • Zhao X, Li A, Mao R, Liu H, Qu J (2014) Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Res 51:134–143

    Article  CAS  Google Scholar 

  • Zheng T, Wang Q, Shi Z, Fang Y, Shi S, Wang J, Wu C (2016) Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation. J Environ Sci 50:21–31

    Article  Google Scholar 

  • Zhou L, Zhou M (2012) Chemical modification of graphite felts for efficient H2O2 production: influence of operational parameters. 3rd International Conference on Development, Energy, Environment, Economics: 154–159

  • Zhu X, Ni J, Xing X, Li H, Jiang Y (2011) Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim Acta 56:1270–1274

    Article  CAS  Google Scholar 

  • Ziylan A, Dogan S, Agopcan S, Kidak R, Aviyente V, Ince NH (2014) Sonochemical degradation of diclofenac: byproduct assessment, reaction mechanisms and environmental considerations. Environ Sci Pollut Res 21:5929–5939

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Department of Environmental Health Engineering of Isfahan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezamaddin Mengelizadeh.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourzamani, H., Mengelizadeh, N., Hajizadeh, Y. et al. Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. Environ Sci Pollut Res 25, 24746–24763 (2018). https://doi.org/10.1007/s11356-018-2527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2527-8

Keywords

Navigation