Skip to main content
Log in

Capacity and mechanism of arsenic adsorption on red soil supplemented with ferromanganese oxide–biochar composites

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Two ferromanganese oxide–biochar composites (FMBC1 and FMBC2) were prepared by an impregnation method to promote the adsorption of As on red soil. Maximum adsorption capacities (Qm) of 0.687 and 0.712 mg g−1 were observed for FMBC1 and FMBC2, respectively, corresponding to increases of 104 and 111% relative to the control treatment (Qm = 0.337 mg g−1). Treatment with FMBC1 increased the pH of red soil, whereas a reverse trend was observed for FMBC2. A variety of analytical techniques were used to explain the differences between FMBC1 and FMBC2, revealing that the oxidation of As(III) to As(V) by Mn and Fe oxides was aided by interactions with the oxygen-containing functional groups of the ferromanganese oxide–biochar composites. Thus, red soil supplemented with the ferromanganese oxide–biochar composites mainly adsorbed As by chemisorption, thereby projecting ferromanganese oxide–biochar composites as potential absorbents for effectively remediating As-polluted red soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FMBC:

Ferromanganese oxide–biochar composite

BC:

Biochar

TGA:

Thermogravimetric analysis

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

FTIR:

Fourier-transform infrared

XPS:

X-ray photoelectron spectroscopy

DOC:

Dissolved organic carbon

Eh:

Oxidation reduction potential

CEC:

Cation exchange capacity

References

  • Bang S, Johnson MD, Korfiatis GP, Meng XG (2005) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  Google Scholar 

  • Boehm H-P, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angew Chem Int Ed 3:669–677

    Article  Google Scholar 

  • Chang F, Qu J, Liu H, Liu R, Zhao X (2009) Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation. J Colloid Interf Sci 338:353–358

    Article  CAS  Google Scholar 

  • Chen W, Parette R, Zou J, Cannon FS, Dempsey BA (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723

    Article  CAS  Google Scholar 

  • Chiu VQ, Hering JG (2000) Arsenic adsorption and oxidation at manganite surfaces. I. Method for simultaneous determination of adsorbed and dissolved arsenic species. Environ Sci Technol 34:2029–2034

    Article  CAS  Google Scholar 

  • Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  • Feng Q, Zhang Z, Chen Y, Liu L, Zhang Z, Chen C (2013) Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe(OH)3 colloid, H2SiO3 colloid and phosphate. Procedia Environ Sci 18:26–36

    Article  CAS  Google Scholar 

  • Gregory SJ, Anderson CWN, Arbestain MC, McManus MT (2014) Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric Ecosyst Environ 191:133–141

    Article  CAS  Google Scholar 

  • Hrudey SE, Chen W, Rousseaux CG (1996) Bioavailability in environmental risk assessment. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Huang YH, Shih YJ, Cheng FJ (2011) Novel KMnO4-modified iron oxide for effective arsenite removal. J Hazard Mater 198:1–6

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Zimmerman AR, Wang S, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216

    Article  CAS  Google Scholar 

  • Jia Y, Xu L, Wang X, Demopoulos GP (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim Cosmochim Acta 71:1643–1654

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Kong S, Wang Y, Zhan H, Liu M, Liang L, Hu Q (2014) Competitive adsorption of humic acid and arsenate on nanoscale iron–manganese binary oxide-loaded zeolite in groundwater. J Geochem Explor 144:220–225

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Lafferty BJ, Gindervogel M, Sparks DL (2010) Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ. Sci. Technol. 44:8460–8466

    Article  CAS  Google Scholar 

  • LeMonte JJ, Stuckey JW, Sanchez JZ, Tappero RV, Rinklebe J, Sparks DL (2017) Sea level rise induced arsenic release from historically contaminated coastal soils. Environ Sci Technol 51(11):5913–5922

    Article  CAS  Google Scholar 

  • Liao XY, Chen TB, Xie H, Liu Y-R (2005) Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31:791–798

    Article  CAS  Google Scholar 

  • Li P, Jiang EY, Bai HL (2011) Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering. J Phys D Appl Phys 44:075003

    Article  CAS  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H, (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res. Int. 503784 (9 pp)

  • Lin L, Gao M, Qiu W, Wang D, Huang Q, Song Z (2017) Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environ Pollut 231(Pt 1):479–486

    Article  CAS  Google Scholar 

  • Liu WJ, Jiang H, Tian K, Ding YW, Yu HQ (2013) Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environ Sci Technol 47:9397–9403

    Article  CAS  Google Scholar 

  • Lubin JH, Fraumeni JF (2000) Re: “Does arsenic exposure increase the risk for circulatory disease?”. Am J Epidemiol 152:290–293

    Article  CAS  Google Scholar 

  • Namgay T, Singh B, Singh BP, (2010) Plant availability of arsenic and cadmium as influenced by biochar application to soil. World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. Symposium 2.5.2 Bioavailability of Metals and Organics. 78–81

  • Nesbitt HW, Canning GW, Bancroft GM (1998) XPS study of reduction dissolution of 7A-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim Cosmochim Acta 62:2097–2110

    Article  CAS  Google Scholar 

  • Oprea G, Michnea A, Mihali C, Senila M, Roman C, Jelea S, Butean C, Barz C (2010) Arsenic and antimony content in soil and plants from Baia Mare area, Romania. Am J Environ Sci 6:33–40

    Article  CAS  Google Scholar 

  • Ouvrard S, Donato PD, Simonnot MO, Begin S, Ghanbaja J, Alnot M, Duval YB, Lhote F, Barres O, Sardin M (2005) Natural manganese oxide: combined analytical approach for solid characterization and arsenic retention. Geochim Cosmochim Acta 69:2715–2724

    Article  CAS  Google Scholar 

  • Pakuła M, Biniak S, ŚwiaTkowski A (1998) Chemical and electrochemical studies of interactions between iron(III) ions and an activated carbon surface. Langmuir 14:3082–3089

    Article  Google Scholar 

  • Pradhan M, Bhargava P (2008) Defect and microstructural evolution during drying of soap nut-based alumina foams. J Eur Ceram Soc 28:3049–3057

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Altson AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Suda A, Makino T (2016) Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma 270:68–75

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  Google Scholar 

  • Tufano KJ, Reyes C, Saltikov CW, Fendorf S (2008) Reductive processes con-trolling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42:8283–8289

    Article  CAS  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2010) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38:589–604

    Article  Google Scholar 

  • Warren GP, Alloway BJ (2003) Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J Environ Qual 32:767–772

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE, (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 402647

  • Wu Y, Zhou XY, Lei M, Yang J, Ma J, Qiao PW et al (2016) Migration and transformation of arsenic: contamination control and remediation in realgar mining areas. Appl Geochem 17:44–51

    Google Scholar 

  • Xu X, Chen C, Wang P, Kretzschmar R, Zhao FJ (2017) Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ Pollut 231(Pt 1):37–47

    Article  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, eh, pH, andiron dissolution. Chemosphere 83:925–932

    Article  CAS  Google Scholar 

  • Yang W, Kan AT, Chen W, Tomson MB (2010) pH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles. Water Res 44:5693–5701.38

    Article  CAS  Google Scholar 

  • Yu Z, Zhou L, Huang Y, Song Z, Qiu W (2015) Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. J Environ Manag 163:155–162

    Article  CAS  Google Scholar 

  • Yu Z, Qiu W, Wang F, Lei M, Wang D, Song Z (2017) Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 168:341–349

    Article  CAS  Google Scholar 

  • Zhang HH, Yuan HX, Hu YG, Wu ZF, Zhu LA, Zhu L, Li FB, Ll DQ (2006) Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China. Environ Pollut 144:492–499

    Article  CAS  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of as (III) by a novel Fe−Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

    Article  CAS  Google Scholar 

  • Zhu J, Lou Z, Wang Z, Xu X (2014) Preparation of iron and manganese oxides/carbon composite materials for arsenic removal from aqueous solution. Prog Chem 26:1551–1561

    CAS  Google Scholar 

  • Zhu J, Baig SA, Sheng T, Lou Z, Wang Z, Xu X (2015) Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. J Hazard Mater 286:220–228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation of China (grant numbers 41771525 and 41273136) and the National Science Foundation of Tianjin (grant number 15JCZDJC33900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOCX 923 kb)

ESM 2

(DOCX 16.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhou, S., Huang, Q. et al. Capacity and mechanism of arsenic adsorption on red soil supplemented with ferromanganese oxide–biochar composites. Environ Sci Pollut Res 25, 20116–20124 (2018). https://doi.org/10.1007/s11356-018-2188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2188-7

Keywords

Navigation