Skip to main content
Log in

Synthesis and characterisation of stable and efficient nano zero valent iron

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nano zero valent iron (nZVI) is an excellent adsorbent/reductant with wide applicability in remediation of persistent contaminants in soil, water and groundwater aquifers. There are concerns about its environmental fate, agglomeration, toxicity and stability in the air. Several modification methods have applied chistosan, green tea, carboxyl methyl cellulose and other coating substances to ensure production of nZVI with excellent air stability and effectiveness. The synthesis of a novel green nZVI (gNZVI) with Harpephyllum caffrum leaf extracts was successfully executed in the current study. Production of gNZVI involved the simultaneous addition of an optimum amount of the NaBH4 and H. caffrum extract to FeCl3 in an inert environment (Nitrogen). The solution was stirred for 30 min, washed with dilute ethanol (50%) and freeze dried. This procedure offered the best option for the synthesis of gNZVI in terms of nontoxic and inexpensive choice of stabiliser/reductant. Systematic characterisations using TGA, TEM, SEM, XRD, FT-IR and XPS confirmed the synthesis of crystalline, stable, reactive, well-dispersed and predominantly 50 nm diameter sized gNZVI compared to the conventionally synthesised nZVI which is 65 nm. The activity testing using Orange II sodium salt (OR2) confirmed the effectiveness of the synthesised gNZVI as an excellent Fenton catalyst with 65% degradation of 20 ppm OR2 dye in 1 h reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Ali MG, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annu Rev Nano Res 2:439–493

    Article  Google Scholar 

  • Ashokkumar R, Ramaswamy M (2014) Original research article phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants. Int J Microbiol Appl Sci 3:395–406

    CAS  Google Scholar 

  • Bae S, Gim S, Kim H, Hanna K (2016) Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl Catal B Environ 182:541–549

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “ antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Berger CM, Geiger CL, Clausen CA, Billow AM, Quinn JW, Brooks KB (2006) International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 5th. In: Evaluating Trichloroethylene Degradation Using Differing Nano- and Micro-Scale Iron Particles. p. c 23 ppr/1-c 23 ppr/8

  • Bishop EJ, Fowler DE, Skluzacek JM, Seibel E, Mallouk TE (2010) Anionic homopolymers efficiently target zerovalent iron particles to hydrophobic contaminants in sand columns. Environ Sci Technol 44:9069–9074

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cao J, Clasen P, Zhang W (2005) J Mater Res 20:3238–3243

    Article  CAS  Google Scholar 

  • Cayuela A, Benitez-Martinez S, Soriano ML (2016) Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. TrAC - Trends Anal Chem 84:172–180

    Article  CAS  Google Scholar 

  • Chahbane N, Popescu D.-L, Mitchell DA, Chanda A, Lenoir D, Ryabov AD, Schramm K.-W, Collins TJ (2006) Fe III–TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms{ 49–57

  • Daniel, E.F., 2010. Synthesis of mannetite-derived zero valent nano iron and targentin of zero valent iron for application in environmental remediation

    Google Scholar 

  • Demir A, Topkaya R, Baykal A (2013) Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: its magnetic investigation. Polyhedron 65:282–287

    Article  CAS  Google Scholar 

  • Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y (2016) Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Environ Pollut 211:363–369

    Article  CAS  Google Scholar 

  • Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R (2016) A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 28:122–130

    Article  CAS  Google Scholar 

  • Fratianni F, Pepe R, Nazzaro F (2014) Polyphenol composition, antioxidant, antimicrobial and quorum quenching activity of the ‘Carciofo di Montoro’ (Cynara cardunculus var. scolymus) global artichoke of the Campania Region, Southern Italy. Food Nutr Sci 5:2053–2062

    CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830

    Article  CAS  Google Scholar 

  • Giersig MGBK (2008) Nanomaterials for application in medicine and biology. NATO Science for Peace and Security Series

  • Gomes HI, Dias-ferreira C, Ottosen LM, Ribeiro AB (2014) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195

    Article  CAS  Google Scholar 

  • Greenlee LF, Torrey JD, Amaro RL, Shaw JM (2012) Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ Sci Technol 46:12913–12920

    Article  CAS  Google Scholar 

  • Hai-Jiao L, Jing-Kang W, Steven F, Ting W, Ying B, Hong-xun H (2016) Nanoscale. Nano 1:1–13

    Google Scholar 

  • Bulovsky HG (2016) The stability, toxicity, and reactivity of zero valent iron nanoparticles. Oregon State University Honors College

  • He C, Han L, Zhang RQ (2016) More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard. Environ Pollut 218:558–562

    Article  CAS  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34

    Article  CAS  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671

    Article  CAS  Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta - Part A Mol Biomol Spectrosc 130:295–301

    Article  CAS  Google Scholar 

  • Jamei MR, Khosravi MR (2013) Degradation of oil from soilusing nano zero valent. Sci Int 25:863–867

    CAS  Google Scholar 

  • Jamei MR, Khosravi MR, Anvaripour B (2014) A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason Sonochem 21:226–233

    Article  CAS  Google Scholar 

  • Jewell KP, Wilson JT (2011) Water level monitoring pressure transducers: a need for industry-wide standards. Ground Water Monit Remediat 31:82–94

    Article  CAS  Google Scholar 

  • Jiao C, Cheng Y, Fan W, Li J (2015) Synthesis of agar-stabilized nanoscale zero-valent iron particles and removal study of hexavalent chromium. Int J Environ Sci Technol 12:1603–1612

    Article  CAS  Google Scholar 

  • Kharisov BI, Dias HVR, Kharissova OV, Jime M, Kharisov BI (2012) Iron-containing nanomaterials: synthesis , properties , and environmental applications. Advances 2:9325–9358

    CAS  Google Scholar 

  • Kim DG, Hwang YH, Shin HS, Ko SO (2015) Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): effect of ionic strength and initial pH. KSCE J Civ Eng 20:175–187

    Article  Google Scholar 

  • Kozma G, Rónavári A, Kónya Z, Kukovecz Á (2016) Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustain Chem Eng 4:291–297

    Article  CAS  Google Scholar 

  • Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618

    Article  CAS  Google Scholar 

  • Liu A, Zhang W (2014) Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analyst 139:4512–4518

    Article  CAS  Google Scholar 

  • Lopez-Telleza G, Barrera-Diaza CE, Balderas-Hernandeza P, Bilyeub (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485

    Article  CAS  Google Scholar 

  • Lu W, Shen Y, Xie A, Zhang W (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833

    Article  CAS  Google Scholar 

  • Mahmoud ME, Saad EA, Soliman MA, Abdelwahab MS (2016) Synthesis and surface protection of nano zerovalent iron (NZVI) with 3-aminopropyltrimethoxysilane for water remediation of cobalt and zinc and their radioactive isotopes. RSC Adv 6:66242–66251

    Article  CAS  Google Scholar 

  • Markova Z, Novak P, Kaslik J, Plachtova P, Brazdova M, Jancula D, Siskova KM, Machala L, Marsalek B, Zboril R, Varma R (2014) Iron(II,III)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustain Chem Eng 2:1674–1680

    Article  CAS  Google Scholar 

  • Turabik M, Simsek UB (2017) Effect of synthesis parameters on the particle size of the zero valent iron particles. Inorg Nano-Metal Chem 47:1033–1043

    Article  CAS  Google Scholar 

  • Mu Y, Jia F, Ai Z, Zhang L (2017) Remediation properties of nano zero-valent iron. Environ Sci Nano 4:27–45

    Article  CAS  Google Scholar 

  • Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2016) A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466

    Article  CAS  Google Scholar 

  • Mystrioti C, Xenidis A, Papassiopi N (2014) Application of iron nanoparticles synthesized by green tea for the removal of hexavalent chromium in column tests. J Geosci Environ Prot 2:28–36

    Google Scholar 

  • Nawwar M, Hussein S, Ayoub N, Hashim A, El-Sharawy R, Lindequist U, Harms M, Wende K (2011) Constitutive phenolics of Harpephyllum caffrum (Anacardiaceae) and their biological effects on human keratinocytes. Fitoterapia 82:1265–1271

    Article  CAS  Google Scholar 

  • Oakes JS (2013) Investigation of iron reduction by green tea polyphenols for application in soil remediation. University of Connecticut

  • Olivier DK (2012) The ethnobotany and chemistry of South African traditional tonic plants by submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR. University of Johanessburg

  • Pattanayak M, Nayak PL (2013) Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. Int J Plant Anim Environ Sci 3:68–78

    CAS  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100

    Article  CAS  Google Scholar 

  • Proestos C, Boziaris IS, Kapsokefalou M, Komaitis M (2008) Natural antioxidant constituents from selected aromatic plants and their antimicrobial activity against selected pathogenic microorganisms. Food Technol Biotechnol 46:151–156

    CAS  Google Scholar 

  • Pullin H, Springell R, Parry S, Scott T (2017) The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem Eng J 308:568–577

    Article  CAS  Google Scholar 

  • Rajan CS (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2:182–187

    Article  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nano 6:209

    Google Scholar 

  • Samaei MR, Maleknia H, Azhdarpoor A (2015) Effects of pH on the kinetics of methyl tertiary butyl ether degradation by oxidation process (H2O2/nano zero-valent iron/ultrasonic). Jundishapur J Heal Sci 7:4–9

    Google Scholar 

  • Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Ero??lu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

  • Sharma R, Lall N (2014) Antibacterial, antioxidant activities and cytotoxicity of plants against Propionibacterium acnes. S Afr J Sci 110:1–8

    Article  Google Scholar 

  • Singh R, Misra V (2015) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handb Nanoparticles:1–19

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Sun J, Xie X, Bi H, Jia H, Zhu C, Wan N, Huang J, Nie M, Li D, Sun L (2017) Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors. Nanotechnology 28:1–7

    CAS  Google Scholar 

  • Suponik T, Lemanowicz M, Wrona P (2016) Stability of green tea nanoscale zero-valent iron 8

  • Taha MR, Ibrahim AH (2014) Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J Environ Chem Eng 2:1–8

    Article  CAS  Google Scholar 

  • Texas HK (2016) Metal Chelation of Polyphenols 6879

  • Thekkae V, Vinod P, Senan C, Somashekarappa HM, Cern M (2017) Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv:13997–14009

  • Thomé A, Reddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226:1–20

    Article  CAS  Google Scholar 

  • Tian L, Shi X, Yu L, Zhu J, Yang X (2012) Chemical composition and hepatoprotective effects of polyphenol-rich extract from Houttuynia cordata tea. J Agric Food Chem 60:4641–4648

    Article  CAS  Google Scholar 

  • Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114:35–42

    Article  CAS  Google Scholar 

  • Wang X, Wang A, Ma J, Fu M (2017) Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes. Chemosphere 166:80–88

    Article  CAS  Google Scholar 

  • Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. Sustain Chem Eng 1:1551–1554

    Article  CAS  Google Scholar 

  • Xiu Z m, Jin Z h, Li T l, Mahendra S, Lowry GV, Alvarez PJJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101:1141–1146

    Article  CAS  Google Scholar 

  • Yaacob WZW, Kamaruzaman N, Samsudin AR (2012) Development of nano-zero valent iron for the remediation of contaminated water. Chem Eng Trans 28:25–30

    Google Scholar 

  • Yan W (2011) Iron-based nanoparticles: investigating the microstructure , surface chemistry , and reactions with environmental contaminants

  • Yew YP, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:276

    Article  CAS  Google Scholar 

  • Yoo BY, Hernandez SC, Koo B, Rheem Y, Myung NV (2007) Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications. Water Sci Technol 55:149–156

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan N (2011) Preparation and characterization of zero valent iron. Dig J Nanomater Biostructures 6:1771–1776

    Google Scholar 

  • Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interf Sci 229:80–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassim O. Badmus.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badmus, K.O., Coetsee-Hugo, E., Swart, H. et al. Synthesis and characterisation of stable and efficient nano zero valent iron. Environ Sci Pollut Res 25, 23667–23684 (2018). https://doi.org/10.1007/s11356-018-2119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2119-7

Keywords

Navigation