Skip to main content

Advertisement

Log in

Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Terbuthylazine belongs to the chloro-s-triazine group of herbicides and acts primarily as a photosynthesis inhibitor. The mechanisms of action related to its exposure, relevant both in animals and humans, are still insufficiently investigated. This comprehensive study focused on the outcomes of terbuthylazine exposure at cell level in vitro, and a mice model in vivo. Experiments in vitro were conducted on whole human peripheral blood, isolated lymphocytes, and HepG2 cells exposed for 4 h to terbuthylazine at 8.00, 0.80, and 0.58 ng/mL, which is comparable with current reference values set by the European Commission in 2011. Terbuthylazine cytotoxicity was evaluated using dual fluorescent staining with ethidium bromide and acridine orange on lymphocytes, and CCK-8 colorimetric assay on HepG2 cells. The levels of DNA damage were measured using alkaline and hOGG1-modified comet assays. The potency of terbuthlyazine regarding induction of oxidative stress in vitro was studied using a battery of standard oxidative stress biomarkers. The in vivo experiment was conducted on Swiss albino mice exposed to terbuthlyazine in the form of an active substance and its formulated commercial product Radazin TZ-50 at a daily dose of 0.0035 mg/kg bw for 14 days. Following exposure, the DNA damage levels in leukocytes, bone marrow, liver, and kidney cells of the treated mice were measured using an alkaline comet assay. In vitro results suggested low terbuthylazine cytotoxicity in non-target cells. The highest tested concentration (8.00 ng/mL) reduced lymphocyte viability by 15%, mostly due to apoptosis, while cytotoxic effects in HepG2 cells at the same concentration were negligible. Acute in vitro exposure of human lymphocytes and HepG2 cells to terbuthylazine resulted in low-level DNA instability, as detected by the alkaline comet assay. Further characterization of the mechanisms behind the DNA damage obtained using the hOGG1-modified comet assay indicated that oxidative DNA damage did not prevail in the overall damage. This was further confirmed by the measured levels of oxidative stress markers, which were mostly comparable to control. Results obtained in mice indicate that both the active substance and formulated commercial product of terbuthylazine produced DNA instability in all of the studied cell types. We found that DNA in liver and kidney cells was more prone to direct toxic effects of the parent compound and its metabolites than DNA in leukocytes and bone marrow cells. The overall findings suggest the formation of reactive terbuthylazine metabolites capable of inducing DNA cross-links, which hinder DNA migration. These effects were most pronounced in liver cells in vivo and HepG2 cells in vitro. To provide a more accurate explanation of the observed effects, additional research is needed. Nevertheless, the present study provides evidence that terbuthylazine at concentrations comparable with current reference values possesses toxicological risk because it caused low-level DNA instability, both at cellular and animal organism level, which should be further established in forthcoming studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADI:

Acceptable daily intake

AO:

Acridine orange

AOEL:

Acceptable operator exposure level

ARfD:

Acute reference dose

AU:

Fluorescence arbitrary unit

EMEM:

Eagle’s minimum essential medium

EtBr:

Ethidium bromide

FBS:

Foetal bovine serum

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

hOGG1:

Human 8-hydroxyguanine DNA-glycosylase 1

LMP:

Low melting point

LPO:

Lipid peroxidation

NC:

Negative control

NMP:

Normal melting point

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TB:

Terbuthylazine

TBARS:

Thiobarbituric acid reactive substances

References

  • Abass K, Turpeinen M, Rautio A, Hakkola J, Pelkonen O (2012) Metabolism of pesticides by human cytochrome P450 enzymes in vitro—a survey, Insecticides - advances in integrated pest management. In: Perveen F (ed). http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management/metabolism-ofpesticides-by-human-cytochrome-p450-enzymes-in-vitro-a-survey. Accessed 15 Feb 2018

  • Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87(6):949–968

    Article  CAS  Google Scholar 

  • Belsten JL, Wright AJ (1995a) European Community--FLAIR common assay for whole-blood glutathione peroxidase (GSH-Px); results of an inter-laboratory trial. Eur J Clin Nutr 49(12):921–927

    CAS  Google Scholar 

  • Belsten JL, Wright AJ (1995b) European community--FLAIR common assay for erythrocyte superoxide dismutase (SOD); results of an inter-laboratory trial. Eur J Clin Nutr 49(12):928–931

    CAS  Google Scholar 

  • Benítez-Bribiesca L, Sánchez P, Toledo J, Peñarroja R, Flores M, Sosa J (2001) Differential staining of DNA strand breaks in dried comet assay slides. J Histochem Cytochem 49(7):921–922

    Article  Google Scholar 

  • Benković V, Đikić D, Grgorinić T, Mladinić M, Želježić D (2012) Haematology and blood chemistry changes in mice treated with terbuthylazine and its formulation Radazin TZ-50. Bull Environ Contam Toxicol 89(5):955–959

    Article  Google Scholar 

  • Bianchi J, Cabral-de-Mello DC, Marin-Morales MA (2015) Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicol Environ Saf 120:174–183

    Article  CAS  Google Scholar 

  • Bolognesi C, Bonatti S, Degan P, Gallerani E, Peluso M, Rabboni R, Roggieri P, Abbondandolo A (1997) Genotoxic activity of glyphosate and its technical formulation Roundup. J Agric Food Chem 45(5):1957–1962

    Article  CAS  Google Scholar 

  • Bossi R, Vinggaard AM, Taxvig C, Boberg J, Bonefeld-Jørgensen EC (2013) Levels of pesticides and their metabolites in Wistar rat amniotic fluids and maternal urine upon gestational exposure. Int J Environ Res Public Health 10(6):2271–2281

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive assay for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buschfort C, Muller M, Seeber S, Rajewsky MF, Thomale J (1997) DNA excision repair profiles of normal and leukemic human lymphocytes: functional analysis at the single-cell level. Cancer Res 57(4):651–658

    CAS  Google Scholar 

  • Buschfort-Papewalis C, Moritz T, Liedert B, Thomale J (2002) Down-regulation of DNA repair in human CD34(+) progenitor cells corresponds to increased drug sensitivity and apoptotic response. Blood 100(3):845–853

    Article  CAS  Google Scholar 

  • Cavas T (2011) In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem Toxicol 49(6):1431–1435

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114(12):1803–1806

    Article  CAS  Google Scholar 

  • Drury JA, Nycyk JA, Cooke RWI (1997) Comparison of urinary and plasma malondialdehyde in preterm infants. Clin Chim Acta 263(2):177–185

    Article  CAS  Google Scholar 

  • Duke RC, Cohen JJ (1992) Morphological and biochemical assays of apoptosis. In: Coligan JE, Kruisbeal AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, pp 3.17.1–3.17.16

    Google Scholar 

  • European Chemicals Agency (2015) Committee for Risk Assessment RAC Opinion proposing harmonised classification and labelling at EU level of Terbuthylazine (ISO); N-tert-butyl-6-chloro-N'-ethyl-1,3,5-triazine-2,4-diamine. https://echa.europa.eu/documents/10162/7ae57f3d-2f2b-469d-ab34-5b97e48f493a. Accessed 12 Feb 2018

  • European Comission (2011) Review report for the active substance terbuthylazine finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 17 June 2011 in view of the approval of terbuthylazine as active substances in accordance with Regulation (EC) No 1107/2009. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=467. Accessed 12 Feb 2018

  • European Food Safety Authority (EFSA) (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.1969/epdf. Accessed 12 Feb 2018

  • European Food Safety Authority (2016) Outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for terbuthylazine in light of confirmatory data. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2016.EN-919. Accessed 12 Feb 2018

  • European Food Safety Authority (EFSA) (2017) Peer review of the pesticide risk assessment for the active substance terbuthylazine in light of confirmatory data submitted. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4868/epdf. Accessed 12 Feb 2018

  • Forgacs AL, D’Souza ML, Huhtaniemi IT, Rahman NA, Zacharewski TR (2013) Triazine herbicides and their chlorometabolites alter steroidogenesis in BLTK1 murine Leydig cells. Toxicol Sci 134(1):155–167

    Article  CAS  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 674(1):3–22

    Article  CAS  Google Scholar 

  • Gebel T, Kevekordes S, Pav K, Edenharder R, Dunkelberg H (1997) In vivo genotoxicity of selected herbicides in the mouse bone-marrow micronucleus test. Arch Toxicol 71(3):193–197

    Article  CAS  Google Scholar 

  • Ghisari M, Long M, Tabbo A, Bonefeld-Jørgensen EC (2015) Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture. Toxicol Appl Pharmacol 284(3):292–303

    Article  CAS  Google Scholar 

  • Green MH, Waugh AP, Lowe JE, Harcourt SA, Cole J, Arlett CF (1994) Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation. Mutat Res 315(1):25–32

    Article  CAS  Google Scholar 

  • Griffiths HR, Dunston CR, Bennett SJ, Grant MM, Phillips DC, Kitas GD (2011) Free radicals and redox signalling in T-cells during chronic inflammation and ageing. Biochem Soc Trans 39(5):1273–1278

    Article  CAS  Google Scholar 

  • Grisolia CK, Bilich MR, Formigli LM (2004) A comparative toxicologic and genotoxic study of the herbicide arsenal, its active ingredient imazapyr, and the surfactant nonylphenol ethoxylate. Ecotoxicol Environ Saf 59(1):123–126

    Article  CAS  Google Scholar 

  • Guilherme S, Santos MA, Barroso C, Gaivão I, Pacheco M (2012) Differential genotoxicity of Roundup formulation and its constituents in blood cells of fish (Anguilla anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21(5):1381–1390

    Article  CAS  Google Scholar 

  • Guo L, Dial S, Shi L, Branham W, Liu J, Fang J-L, Green B, Deng H, Kaput J, Ning B (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39(3):528–538

    Article  CAS  Google Scholar 

  • Hartnett S, Musah S, Dhanwada KR (2013) Cellular effects of metolachlor exposure on human liver (HepG2) cells. Chemosphere 90(3):1258–1266

    Article  CAS  Google Scholar 

  • Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S (1998) The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis. 13(1):89–94

  • Hreljac I, Zajc I, Lah T, Filipic M (2008) Effects of model organophosphorous pesticides on DNA damage and proliferation of HepG2 cells. Environ Mol Mutagen 49(5):360–367

    Article  CAS  Google Scholar 

  • Jurica K, Brčić Karačonji I, Benković V, Kopjar N (2017) In vitro assessment of the cytotoxic, DNA damaging, and cytogenetic effects of hydroquinone in human peripheral blood lymphocytes. Arh Hig Rada Toksikol 68(4):322–335

    Article  Google Scholar 

  • Kamencic H, Lyon A, Paterson PG, Juurlink BH (2000) Monochlorobimane fluorometric method to measure tissue glutathione. Anal Biochem 286(1):35–37

    Article  CAS  Google Scholar 

  • Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387(3):147–163

    Article  CAS  Google Scholar 

  • Kašuba V, Milić M, Rozgaj R, Kopjar N, Mladinić M, Žunec S, Lucić Vrdoljak A, Pavičić I, Marjanović Čermak AM, Pizent A, Lovaković BT, Želježić D (2017) Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ Sci Pollut Res Int 24(23):19267–19281

    Article  Google Scholar 

  • Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 402(1–2):185–202

    Article  Google Scholar 

  • Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198(1–3):315–328

    Article  Google Scholar 

  • Kocaman AY, Topaktas M (2009) The in vitro genotoxic effects of a commercial formulation of α-cypermethrin in human peripheral blood lymphocytes. Environ Mol Mutagen 50(1):27–36

    Article  CAS  Google Scholar 

  • Koutnik D, Stara A, Zuskova E, Kouba A, Velisek J (2017) The chronic effects of terbuthylazine-2-hydroxy on early life stages of marbled crayfish (Procambarus fallax f. virginalis). Pestic Biochem Physiol 136:29–33

    Article  CAS  Google Scholar 

  • Lang D, Criegee D, Grothusen A, Saalfrank RW, Böcker RH (1996) In vitro metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in rats, pigs, and humans. Drug Metab Dispos 24(8):859–865

    CAS  Google Scholar 

  • Lang DH, Rettie AE, Böcker RH (1997) Identification of enzymes involved in the metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in human liver microsomes. Chem Res Toxicol 10(9):1037–1044

    Article  CAS  Google Scholar 

  • Langie SAS, Azqueta A, Collins AR (2015) The comet assay: past, present, and future. Front Genet 6:266. https://doi.org/10.3389/fgene.2015.00266

    Article  Google Scholar 

  • Liao W, McNutt MA, Zhu WG (2009) The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48(1):46–53

    Article  CAS  Google Scholar 

  • Mahmoud IAEMD (2008) Studies of atrazine effects on DNA in mice by chromosomal aberration test and agarose gel electrophoresis assay. J Egypt Soc Toxicol 39:25–38

    Google Scholar 

  • Manera M, Giari L, Depasquale JA, Dezfuli BS (2016a) European sea bass gill pathology after exposure to cadmium and terbuthylazine: expert versus fractal analysis. J Microsc 261(3):291–299

    Article  CAS  Google Scholar 

  • Manera M, Sayyaf Dezfuli B, DePasquale JA, Giari L (2016b) Multivariate approach to gill pathology in European sea bass after experimental exposure to cadmium and terbuthylazine. Ecotoxicol Environ Saf 129:282–290

    Article  CAS  Google Scholar 

  • Mateos R, Goya L, Bravo L (2004) Determination of malondialdehyde by liquid chromatography as the 2,4-dinitrophenylhydrazone derivative: a marker for oxidative stress in cell cultures of human hepatoma HepG2. J Chromatogr B 805(1):33–39

    Article  CAS  Google Scholar 

  • Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human disease. Clin Biochem 32(8):595–603

    Article  Google Scholar 

  • Mercadante R, Polledri E, Fustinoni S (2012a) Determination of terbuthylazine and desethylterbuthylazine in human urine and hair samples by electrospray ionization-liquid chromatography/triple quadrupole mass spectrometry. Anal Bioanal Chem 404(3):875–886

    Article  CAS  Google Scholar 

  • Mercadante R, Polledri E, Giavini E, Menegola E, Bertazzi PA, Fustinoni S (2012b) Terbuthylazine in hair as a biomarker of exposure. Toxicol Lett 210(2):169–173

    Article  CAS  Google Scholar 

  • Mikulikova I, Modra H, Blahova J, Kruziková K, Marsalek P, Bedanova I, Svobodova Z (2013) Recovery ability of common carp (Cyprinus carpio) after a short-term exposure to terbuthylazine. Pol J Vet Sci 16(1):17–23

  • Mladinić M, Perković P, Želježić D (2009) Characterization of chromatin instabilities induced by glyphosate, terbuthylazine and carbofuran using cytome FISH assay. Toxicol Lett 189(2):130–137

    Article  Google Scholar 

  • Mladinić M, Želježić D, Shaposhnikov SA, Collins AR (2012) The use of FISH-comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran. Toxicol Lett 211(1):62–69

    Article  Google Scholar 

  • Molinari G, Soloneski S, Reigosa MA, Larramendy ML (2009) In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec® on Chinese hamster ovary (CHOK1) cells. J Hazard Mater 165(1–3):1074–1082

    Article  CAS  Google Scholar 

  • Nikoloff N, Larramendy ML, Soloneski S (2014) Assessment of DNA damage, cytotoxicity, and apoptosis in human hepatoma (HepG2) cells after flurochloridone herbicide exposure. Food Chem Toxicol 65:233–241

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2016) OECD guideline for the testing of chemicals. Test Guideline 487. http://www.oecd.org/env/test-no-487-in-vitro-mammalian-cell-micronucleus-test-9789264224438-en.htm. Accessed 9 Feb 2018

  • Papadopoulos N, Gikas E, Zalidis G, Tsarbopoulos A (2007) Simultaneous determination of terbuthylazine and its major hydroxy and dealkylated metabolites in wetland water samples using solid-phase extraction and high-performance liquid chromatography with diode-array detection. J Agric Food Chem 55(18):7270–7277

    Article  CAS  Google Scholar 

  • Pareek A, Godavarthi A, Issarani R, Prakash Nagori B (2013) Antioxidant and hepatoprotective activity of Fagonia schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in HepG2 cell line and rats. J Ethnopharmacol 150(3):973–981

    Article  Google Scholar 

  • Plhalova L, Stefanova S, Blahová J, Praskova E, Hostovsky M, Skoric M, Zelnickova L, Svobodova Z, Bedanova I (2012) The effects of subchronic exposure to terbuthylazine on zebrafish. Neuroendocrinol Lett 33(Suppl 3):113–119

    CAS  Google Scholar 

  • Powell ER, Faldladdin N, Rand AD, Pelzer D, Schrunk EM, Dhanwada KR (2011) Atrazine exposure leads to altered growth of HepG2 cells. Toxicol in Vitro 25(3):644–651

    Article  CAS  Google Scholar 

  • Prance A, Coopersmith K, Stobiecka M, Hepel M (2010) Biosensors for the detection of DNA damage by toxicants. ECS Trans:33(8):3–33(8)15

  • Riahi S, Mashhadi A, Eynollahi S, Ganjali MR, Norouzi P (2010) Effect of herbicide terbutryn on the DNA base pairs: design of new herbicide with the minimum toxicity. Int J Electrochem Sci 5:955–966

    CAS  Google Scholar 

  • Ribas G, Frenzilli G, Barale R, Marcos R (1995) Herbicide-induced DNA damage in human lymphocytes evaluated by the single-cell gel electrophoresis (SCGE) assay. Mutat Res 344(1–2):41–54

    Article  CAS  Google Scholar 

  • Sass JB, Colangelo A (2006) European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 12(3):260–267

    Article  CAS  Google Scholar 

  • Saxena PN, Chauhan LK, Gupta SK (2005) Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology 216(2–3):244–252

    Article  CAS  Google Scholar 

  • Sigma-Aldrich Inc (2018) Histopaque®-1077 (Procedure No. 1077). http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/10771pis.pdf. Accessed 9 Feb 2018

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  • Smith CC, O’Donovan MR, Martin EA (2006) hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21(3):185–190

    Article  CAS  Google Scholar 

  • Soloneski S, González M, Piaggio E, Reigosa MA, Larramendy MA (2002) Effect of dithiocarbamate pesticide zineb and its commercial formulation, azzurro III. Genotoxic evaluation on Chinese hamster ovary (CHO) cells. Mutat Res 514(1–2):201–212

    Article  CAS  Google Scholar 

  • Spanswick VJ, Hartley JM, Hartley JA (2010) Measurement of DNA interstrand crosslinking in individual cells using the single cell gel electrophoresis (comet) assay. In: Fox K (ed) Drug-DNA interaction protocols. Methods in molecular biology (methods and protocols), vol 613. Humana Press, pp 267–282

  • Stara A, Zuskova E, Kouba A, Velisek J (2016) Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Sci Total Environ 566-567:733–740

    Article  CAS  Google Scholar 

  • Štepanova S, Plhalova L, Doleželova P, Prokeš M, Maršalek M, Škorič M, Svobodova Z (2012) The effects of subchronic exposure to terbuthylazine on early developmental stages of common carp. Sci World J Article ID 615920, 7 pages. https://doi.org/10.1100/2012/615920

  • Stigaard Kjeldsen L, Ghisari M, Bonefeld-Jørgensen EC (2013) Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol Appl Pharmacol 272(2):453–464

    Article  Google Scholar 

  • Stipičević S, Galzina N, Udiković-Kolić N, Jurina T, Mendaš G, Dvoršćak M, Petrić I, Barić K, Drevenkar V (2015) Distribution of terbuthylazine and atrazine residues in crop-cultivated soil: the effect of herbicide application rate on herbicide persistence. Geoderma 259-260:300–309

    Article  Google Scholar 

  • Stipičević S, Mendaš G, Dvoršćak M, Fingler S, Galzina N, Barić K (2017) Dissipation dynamics of terbuthylazine in soil during the maize growing season. Arh Hig Rada Toksikol 68(4):336–342

    Article  Google Scholar 

  • Stobiecka M, Coopersmith K, Cutler S, Hepel M (2010) Novel DNA-hybridization biosensors for studies of DNA underwinding caused by herbicides and pesticides. ECS Trans 28(34):1–12

    Google Scholar 

  • Tariba Lovaković B, Pizent A, Kašuba V, Kopjar N, Micek V, Mendaš G, Dvoršćak M, Mikolić A, Milić M, Žunec S, Lucić Vrdoljak A, Želježić D (2017) Effects of sub-chronic exposure to terbuthylazine on DNA damage, oxidative stress and parent compound/metabolite levels in adult male rats. Food Chem Toxicol 108(Pt A):93–103

    Article  Google Scholar 

  • Taxvig C, Hadrup N, Boberg J, Axelstad M, Bossi R, Bonefeld-Jørgensen EC, Vinggaard AM (2013) In vitroin vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicol Appl Pharmacol 272(3):757–766

    Article  CAS  Google Scholar 

  • Tennant AH, Peng B, Kligerman AD (2001) Genotoxicity studies of three triazine herbicides: in vivo studies using the alkaline single cell gel (SCG) assay. Mutat Res 493(1–2):1–10

    CAS  Google Scholar 

  • Thomale J, Müller MR, Buschfort C, Seeber S, Rajewsky MF (1998) Alterations in DNA repair: implications for leukemia cell biology. In: Hiddemann W et al (eds) Acute Leukemias VII. Haematology and blood transfusion/Hämatologie und Bluttransfusion. Springer, Berlin, pp 3–12

    Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  Google Scholar 

  • Trevigen (2017) hOGG1 FLARE™ Assay Kit. https://trevigen.com/docs/protocol/protocol_4130-100-FK.pdf. Accessed 9 Feb 2018

  • Turner PV, Brabb T, Pekow C, Vasbinder M (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613

    CAS  Google Scholar 

  • Ündeğer Ü, Başaran N (2005) Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch Toxicol 79(3):169–176

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1995) Reregistration Eligibility Decision (RED): Terbuthylazine 738-R-95-005. http://archive.epa.gov/pesticides/reregistration/web/pdf/2645.pdf. Accessed 9 Feb 2018

  • USEPA Office of Pesticide Programs, Chemicals Evaluated for Carcinogenic Potential (2017) Annual Cancer Report 2017. http://npic.orst.edu/chemicals_evaluated.pdf. Accessed 12 Feb 2018

  • Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón J, Milić M, Olivares JL, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016a) Assessment of genotoxicity of Lannate-90® and its plant and animal metabolites in human lymphocyte cultures. Arh Hig Rada Toksikol 67(2):116–125

    Article  CAS  Google Scholar 

  • Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón J, Milić M, Olivares JL, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016b) Genotoxic effects of the carbamate insecticide Pirimor-50® in Vicia faba root tip meristems and human lymphocyte culture after direct application and treatment with its metabolic extracts. Arh Hig Rada Toksikol 67(4):266–276

    Article  CAS  Google Scholar 

  • Velisek J, Stara A, Koutnik D, Machova J (2014) Effect of terbuthylazine-2-hydroxy at environmental concentrations on early life stages of common carp (Cyprinus carpio L.). Biomed Res Int 621304. https://doi.org/10.1155/2014/621304

  • Velisek J, Stara A, Koutnik D, Zuskova E (2015) Effects of terbuthylazine on early life stages of common carp. Neuro Endocrinol Lett 36(Suppl 1):120–125

    CAS  Google Scholar 

  • Velisek J, Koutnik D, Zuskova E, Stara A (2016a) Effects of the terbuthylazine metabolite terbuthylazine desethyl on common carp embryos and larvae. Sci Total Environ 539:214–220

    Article  CAS  Google Scholar 

  • Velisek J, Stara A, Zuskova E (2016b) Effect of single and combination of three triazine metabolites at environmental concentrations on early life stages of common carp (Cyprinus carpio L.). Environ Sci Pollut Res Int 23(23):24289–24297

    Article  CAS  Google Scholar 

  • Velisek J, Stara A, Zuskova E, Kouba A (2017) Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis). Chemosphere 175:440–445

    Article  CAS  Google Scholar 

  • Villarini M, Scassellati-Sforzolini G, Moretti M, Pasquini R (2000) In vitro genotoxicity of terbutryn evaluated by the alkaline single-cell microgel-electrophoresis “comet” assay. Cell Biol Toxicol 16(5):285–292

    Article  CAS  Google Scholar 

  • Westerink WM, Schoonen WG (2007) Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol in Vitro 21(8):1592–1602

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2003) Terbuthylazine in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization WHO/SDE/WSH/03.04/63. http://www.who.int/water_sanitation_health/dwq/chemicals/terbuthylazine.pdf. Accessed 12 Feb 2018

  • Wu JH, Jones NJ (2012) Assessment of DNA interstrand crosslinks using the modified alkaline comet assay. In: Parry J, Parry E (eds) Genetic toxicology. Methods in Molecular Biology (Methods and Protocols), vol 817. Springer, New York, pp 165–181

    Google Scholar 

  • Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24(7):380–386

    Article  CAS  Google Scholar 

  • Želježić D, Garaj-Vrhovac V (2004) Genotoxicity evaluation of pesticide formulations containing alachlor and atrazine in multiple mouse tissues (blood, kidney, liver, bone marrow, spleen) by comet assay. Neoplasma 51(3):198–203

    Google Scholar 

  • Želježić D, Garaj-Vrhovac V, Perković P (2006) Evaluation of DNA damage induced by atrazine and atrazine-based herbicide in human lymphocytes in vitro using a comet and DNA diffusion assay. Toxicol in Vitro 20(6):923–935

    Article  Google Scholar 

  • Želježić D, Mladinić M, Žunec S, Lucić Vrdoljak A, Kašuba V, Tariba B, Živković T, Marjanović AM, Pavičić I, Milić M, Rozgaj R, Kopjar N (2016) Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem Toxicol 96:90–106

    Article  Google Scholar 

  • Žunec S, Kašuba V, Pavičić I, Marjanović AM, Tariba B, Milić M, Kopjar N, Pizent A, Lucić Vrdoljak A, Rozgaj R, Želježić D (2016) Assessment of oxidative stress responses and the cytotoxic and genotoxic potential of the herbicide tembotrione in HepG2 cells. Food Chem Toxicol 94:64–74

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Project No. 8366 Organic Pollutants in Environment—Markers and Biomarkers of Toxicity (OPENTOX), funded by the Croatian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevenka Kopjar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Želježić, D., Žunec, S., Bjeliš, M. et al. Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells. Environ Sci Pollut Res 25, 19065–19081 (2018). https://doi.org/10.1007/s11356-018-2046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2046-7

Keywords

Navigation