Skip to main content

Advertisement

Log in

Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate’s internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams WJ, Biddinger GR, Robillard KA, Gorsuch JW (1995) A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ Toxicol Chem 14:1569–1574

    Article  CAS  Google Scholar 

  • Ahmed AU, Alexiades NG, Lesniak MS (2010) The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther 12:546–552

    CAS  Google Scholar 

  • Alaiti MA, Ishikawa M, Costa MA (2010) Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. Transl Res 156:112–129. https://doi.org/10.1016/j.trsl.2010.06.008

    Article  CAS  Google Scholar 

  • ATSDR (1995) Toxicological profile for diethylphthalate. Agency for Toxic Substances and Disease, Atlanta

    Google Scholar 

  • ATSDR (2001) Toxicological profile for di-n-butyl phthalate. Agency for Toxic Substances and Disease, Atlanta

    Google Scholar 

  • ATSDR (1997) Toxicological profile for di-n-octylphthalate. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T (2008) IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712. https://doi.org/10.1634/stemcells.2008-0034

    Article  CAS  Google Scholar 

  • Bang DY, Lee IK, Lee BM (2011) Toxicological characterization of phthalic acid. Toxicol Res 27:191–203. https://doi.org/10.5487/TR.2011.27.4.191

    Article  CAS  Google Scholar 

  • Bell FP, Gillies PJ (1977) Effect of dietary di-2-ethylhexyl phthalate on oxidation of 14 C-palmitoyl CoA by mitochondria from mammalian heart and liver. Lipids 12(7):581–585

    Article  CAS  Google Scholar 

  • Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA (2017) Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater 340:360–383. https://doi.org/10.1016/j.jhazmat.2017.06.036

    Article  CAS  Google Scholar 

  • Bhattacharya N, Dufour JM, Vo M-N, Okita J, Okita R, Kim KH (2005) Differential effects of phthalates on the testis and the liver. Biol Reprod 72:745–754. https://doi.org/10.1095/biolreprod.104.031583

    Article  CAS  Google Scholar 

  • Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58:593–608. https://doi.org/10.1016/j.jhep.2012.12.005

    Article  Google Scholar 

  • Bursch W, Lauer B, Timmermann-Trosiener T, Barthel G, Schuppler J, Schulte-Hermann R (1984) Controlled cell death (apoptosis) of normal and putative neoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis 5:53–58

    Article  Google Scholar 

  • Cantz T, Manns MP, Ott M (2008) Stem cells in liver regeneration and therapy. Cell Tissue Res 331:271–282. https://doi.org/10.1007/s00441-007-0483-6

    Article  Google Scholar 

  • Chang YJ, Liu JW, Lin PC, Sun LY, Peng CW, Luo GH, Chen TM, Lee RP, Lin SZ, Harn HJ, Chiou T (2009) Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci 85:517–525

    Article  CAS  Google Scholar 

  • Chen CC, Wang YH, Wang SL, Huang PC, Chuang SC, Chen MH, Chen BH, Sun CW, Fu HC, Lee CC, Wu MT, Chen ML, Hsiung CA (2017) Exposure sources and their relative contributions to urinary phthalate metabolites among children in Taiwan. Int J Hyg Environ Health 220:869–879. https://doi.org/10.1016/j.ijheh.2017.04.002

    Article  CAS  Google Scholar 

  • CSTEE (Scientific Committe on Toxicity E and TE) (1998) Phthalate migration from soft PVC toys and child-care articles. Opinion expressed at the CSTEE third plenary meeting

  • David RM, Moore MR, Cifone MA, Finney DC, Guest D (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di (2-ethylhexyl) phthalate and the effects of recovery. Toxicol Sci 50(2):195–205

    Article  CAS  Google Scholar 

  • De Toni L, Tisato F, Seraglia R et al (2017) Phthalates and heavy metals as endocrine disruptors in food: a study on pre-packed coffee products. Toxicol Reports 4:234–239. https://doi.org/10.1016/j.toxrep.2017.05.004

    Article  Google Scholar 

  • Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2:440. https://doi.org/10.1038/ncomms1453

    Article  Google Scholar 

  • Fan Y, Chen H, Liu H, Wang F, Ma S, Latipa A, Wang S, Wang C (2017) Analysis of phthalate esters in dairy products—a brief review. Anal Methods 9:370–380. https://doi.org/10.1039/C6AY02885C

    Article  Google Scholar 

  • Frederiksen H, Skakkebæk NE, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51:899–911. https://doi.org/10.1002/mnfr.200600243

    Article  CAS  Google Scholar 

  • Gao H, Zhu YD, Xu YY et al (2017) Season-dependent concentrations of urinary phthalate metabolites among Chinese pregnant women: repeated measures analysis. Environ Int 104:110–117. https://doi.org/10.1016/j.envint.2017.03.021

    Article  CAS  Google Scholar 

  • Gerbracht U, Bursch W, Kraus P, Putz B, Reinacher M, Timmermann-Gtrosiener I (1990) Effects off JhypolipMemic drags pUnemotypic expression amd cell off rat liver cloffibrate om in altered foci. 11(4):617–24

  • Goll V, Alexandre E, Viollon-Abadie C, Nicod L, Jaeck D, Richert L (1999) Comparison of the effects of various peroxisome proliferators on peroxisomal enzyme activities, DNA synthesis, and apoptosis in rat and human hepatocyte cultures. Toxicol Appl Pharmacol 160(1):21–32

    Article  CAS  Google Scholar 

  • Harn HJ, Lin SZ, Hung SH, Subeq YM, Li YS, Syu WS, Ding DC, Lee RP, Hsieh DK, Lin PCCT (2012) Adipose-derived stem cells can abrogate chemical-induced liver fibrosis and facilitate recovery of liver function. Cell Transplant 21:2753–2764

    Article  Google Scholar 

  • Hasmall SC, James NH, Macdonald N, West D, Chevalier S, Cosulich SC, Roberts RA (1999) Suppression of apoptosis and induction of DNA synthesis in vitro by the phthalate plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes in vitro. Arch Toxicol 73(8–9):451–456

    Article  CAS  Google Scholar 

  • Hasmall SC, Roberts RA (2000) The nongenotoxic hepatocarcinogens diethylhexylphthalate and methylclofenapate induce DNA synthesis preferentially in octoploid rat hepatocytes. Toxicol Pathol 28:503–509

    Article  CAS  Google Scholar 

  • Hauser R (2005) Phthalates and human health. Occup Environ Med 62:806–818. https://doi.org/10.1136/oem.2004.017590

    Article  CAS  Google Scholar 

  • Health Canada (1994) Bis(2- ethylhexyl) phthalate. Priority substances list assessment report. Canadian environmental protection act. Health Canada, Ottawa, p 32

    Google Scholar 

  • Health Canada (2001) Priority substances list. Assessment report: bis(2-ethylhexyl) phathalate

  • Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS (2006) Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44:1478–1486. https://doi.org/10.1002/hep.21441

    Article  CAS  Google Scholar 

  • Higuchi A, Ku N-J, Tseng Y-C, Pan CH, Li HF, Kumar SS, Ling QD, Chang Y, Alarfaj AA, Munusamy MA, Benelli G, Murugan K (2017) Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Investig 97:1–13. https://doi.org/10.1038/labinvest.2017.100

    Article  Google Scholar 

  • Hinton RH, Mitchell FE, Mann A (1986) Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect 70:195–210

    Article  CAS  Google Scholar 

  • Hurst CH, Waxman DJ (2003) Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci 74(2):297–308

    Article  CAS  Google Scholar 

  • Iimuro Y, Brenner DA (2008) Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res 25:249–258. https://doi.org/10.1007/s11095-007-9311-7

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2000) IARC (International Agency for Research on Cancer) some industrial chemicals IARC Monographs, 77 (2000), pp. 41–148

  • Ipapo KN, Factor-Litvak P, Whyatt RM, Calafat AM, Diaz D, Perera F, Rauh V, Herbstman JB (2017) Maternal prenatal urinary phthalate metabolite concentrations and visual recognition memory among infants at 27 weeks. Environ Res 155:7–14. https://doi.org/10.1016/j.envres.2017.01.019

    Article  CAS  Google Scholar 

  • Jin SZ, Liu BR, Xu J, Gao FL, Hu ZJ, Wang XH, Pei FH, Hong Y, Hu HY, Han M (2012) Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury. Hepatobiliary Pancreat Dis Int 11:66–73

    Article  Google Scholar 

  • Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK (2016) Review article a global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236. https://doi.org/10.1016/j.envint.2016.09.013

    Article  CAS  Google Scholar 

  • Kim SH, Park MJ (2014) Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab 19:69–75. https://doi.org/10.6065/apem.2014.19.2.69

    Article  Google Scholar 

  • Kubo N, Narumi S, Kijima H, Mizukami H, Yagihashi S, Hakamada K, Nakane A (2012) Efficacy of adipose tissue-derived mesenchymal stem cells for fulminant hepatitis in mice induced by concanavalin A. J Gastroenterol Hepatol 27:165–172. https://doi.org/10.1111/j.1440-1746.2011.06798.x

    Article  CAS  Google Scholar 

  • Lake BG, Gangolli SD, Grasso P, Lloyd AG (1975) Studies on the hepatic effects of orally administered di-(2-ethylhexyl) phthalate in the rat. Toxicol Appl Pharmacol 32:355–367. https://doi.org/10.1016/0041-008X(75)90226-4

    Article  CAS  Google Scholar 

  • Larsson K, Lindh CH, Jönsson BA et al (2017) Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ Int 102:114–124. https://doi.org/10.1016/j.envint.2017.02.006

    Article  CAS  Google Scholar 

  • Lin SZ, Chang YJ, Liu JW, Chang LF, Sun LY, Li YS, Luo GH, Liao CH, Chen PH, Chen TM, Lee R (2010) Transplantation of human Wharton’s jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 19:1451–1463

    Article  Google Scholar 

  • Lloyd AG (1975) Studies on the hepatic effects of orally administered phthalate the rat DEHP has an extremely low order of acute toxicity ( Patty 1967). However, subacute studies in the rat have shown that the oral administration of DEHP leads to liver enlargement. Toxicol Appl 32:355–367

    Article  Google Scholar 

  • Lu Y, Wang YY, Yang N, Zhang D, Zhang FY, Gao HT, Rong WT, Yu SQ, Xu Q (2014) Food emulsifier polysorbate 80 increases intestinal absorption of di-(2-Ethylhexyl) phthalate in rats. Toxicol Sci 139:317–327. https://doi.org/10.1093/toxsci/kfu055

    Article  CAS  Google Scholar 

  • Maloney EK, Waxman DJ (1999) Trans-activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161(2):209–218

    Article  CAS  Google Scholar 

  • NTP-CERHR (2000) NTP-CERHR expert panel report on di(2-ethylhexyl) phthalate. NTP-CERHR-DEHP

  • Oomen AG, van Twillert K, Hofhuis MFA, et al (2003) Development and suitability of in vitro digestion models in assessing bioaccessibility of lead from toy matrices. RIVM Rep 1–38

  • Pell T, Eliot M, Chen A, Lanphear BP, Yolton K, Sathyanarayana S, Braun JM (2017) Parental concern about environmental chemical exposures and children’s urinary concentrations of phthalates and phenols. J Pediatr 186:138–144.e3. https://doi.org/10.1016/j.jpeds.2017.03.064

    Article  CAS  Google Scholar 

  • Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283(5745):397–398

    Article  CAS  Google Scholar 

  • Rusyn I, Peters JM, Cunningham ML (2006) Effects of DEHP in the liver: modes of action and species- specific differences. Crit Rev Toxicol 36(5):459–479

    Article  CAS  Google Scholar 

  • Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl 4-induced liver fibrosis in mice. Hepatology 40:1304–1311. https://doi.org/10.1002/hep.20452

    Article  Google Scholar 

  • Sakhi AK, Sabaredzovic A, Cequier E, Thomsen C (2017) Phthalate metabolites in Norwegian mothers and children: levels, diurnal variation and use of personal care products. Sci Total Environ 599–600:1984–1992. https://doi.org/10.1016/j.scitotenv.2017.05.109

    Article  Google Scholar 

  • Sakurai T, Miyazawa S, Hashimoto T (1978) Effects of di-(2-ethylhexyl) phthalate administration on carbohydrate and fatty acid metabolism in rat liver. J Biochem 83(1):313–320

    Article  CAS  Google Scholar 

  • Salomone F, Barbagallo I, Puzzo L, Piazza CVG (2013) Efficacy of adipose tissue-mesenchymal stem cell transplantation in rats with acetaminophen liver injury. Stem Cell Res 11:1037–1044

    Article  CAS  Google Scholar 

  • Sathyanarayana S (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 38:34–49. https://doi.org/10.1016/j.cppeds.2007.11.001

    Article  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29:134–139. https://doi.org/10.1111/j.1365-2605.2005.00567.x

    Article  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393

    Article  CAS  Google Scholar 

  • Seo KW, Kim KB, Kim YJ, Choi JY, Lee KT, Choi KS (2004) Comparison of oxidative stress and changes of xenobiotic metabolizing enzymes induced by phthalates in rats. Food Chem Toxicol 42(1):107–114

    Article  CAS  Google Scholar 

  • Shen G, Zhou L, Liu W, Cui Y, Xie W, Chen H, Li H (2017) Di (2-ethylhexyl) phthalate alters the synthesis and β-oxidation of fatty acids and hinders ATP supply in mouse testes via UPLC-Q-Exactive Orbitrap MS-based Metabonomics study. J Agric Food Chem 65(24):5056–5063

    Article  CAS  Google Scholar 

  • Singh S, Li SS (2011) Genomics phthalates: toxicogenomics and inferred human diseases. Genomics 97:148–157. https://doi.org/10.1016/j.ygeno.2010.11.008

    Article  CAS  Google Scholar 

  • Siqueira RC (2011) Stem cell therapy for retinal diseases: update. Stem Cell Res Ther 2:50. https://doi.org/10.1186/scrt91

    Article  CAS  Google Scholar 

  • Subedi B, Sullivan KD, Dhungana B (2017) Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environ Pollut 230:701–708. https://doi.org/10.1016/j.envpol.2017.07.028

    Article  CAS  Google Scholar 

  • Sweeney BP, Bromilow J (2006) Liver enzyme induction and inhibition: implications for anaesthesia. Anaesthesia 61:159–177. https://doi.org/10.1111/j.1365-2044.2005.04462.x

    Article  CAS  Google Scholar 

  • Taylor P, Kluwe WM, Haseman JK et al (1982) The carcinogenicity of dietary di ( 2- ethylhexyl ) phthalate ( DEHP ) in fischer 344 rats and B6C3F 1 mice. J Toxicol Environ Heal Curr Issues 10:797–815

    Article  Google Scholar 

  • Terai S, Sakaida I, Nishina H, Okita K (2005) Lesson from the GFP/CCl4 model—Translational Research Project: the development of cell therapy using autologous bone marrow cells in patients with liver cirrhosis. J Hepato-Biliary-Pancreat Surg 12:203–207. https://doi.org/10.1007/s00534-005-0977-0

    Article  Google Scholar 

  • Tran TM, Le HT, Minh TB, Kannan K (2017) Occurrence of phthalate diesters in indoor air from several northern cities in Vietnam, and its implication for human exposure. Sci Total Environ 601–602:1695–1701. https://doi.org/10.1016/j.scitotenv.2017.06.016

    Article  Google Scholar 

  • Tsai P-C, Fu T-W, Chen Y-MA, Ko TL, Chen TH, Shih YH, Hung SC, Fu YS (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplant 15:484–495. https://doi.org/10.1002/lt.21715

    Article  Google Scholar 

  • USEPA (1991) Di(2-ethylhexyl)phthalate (DEHP). (CASRN 117-81-7): reference dose for chronic oral exposure (RfD). Available: /http://www.epa.gov/iris/subst/0014.html

  • USEPA (1993) Integrated risk information system (IRIS), dietyl phthalate. National Center for Environmental Assessment. U.S. Environmental Protection Agency. www.epa.gov/iris/subst/0226.html

  • USEPA (1990) Integrated risk information system (IRIS), 1990. Dibutyl phthalate. /www.epa.gov/iris/subst/0038.htm

  • Ward JM, Peters JM, Perella CM, Gonzalez FJ (1998) Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptorα-null mice. Toxicol Pathol 26(2):240–246

    Article  CAS  Google Scholar 

  • Winberg LD, Badr MZ (1995) Mechanism of phthalate-induced inhibition of hepatic mitochondrial β-oxidation. Toxicol Lett 76(1):63–69

    Article  CAS  Google Scholar 

  • Wittassek M, Koch HM, Angerer J, Brüning T (2011) Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res 55:7–31

    Article  CAS  Google Scholar 

  • Wu H, Olmsted A, Cantonwine DE, Shahsavari S, Rahil T, Sites C, Pilsner JR (2017) Urinary phthalate and phthalate alternative metabolites and isoprostane among couples undergoing fertility treatment. Environ Res 153:1–7. https://doi.org/10.1016/j.envres.2016.11.003

    Article  CAS  Google Scholar 

  • Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, Zhou H, Mao F (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29:356–365. https://doi.org/10.1111/j.1478-3231.2008.01855.x

    Article  CAS  Google Scholar 

  • Yoshida T (2017) Analytical method for urinary metabolites as biomarkers for monitoring exposure to phthalates by gas chromatography/mass spectrometry. Biomed Chromatogr 31:e3910. https://doi.org/10.1002/bmc.3910

    Article  Google Scholar 

  • Yuswir NS, Praveena SM, Aris AZ, Hashim Z (2013) Bioavailability of heavy metals using in vitro digestion model: a state of present knowledge. Rev Environ Health 28:181–187. https://doi.org/10.1515/reveh-2013-0012

    Article  CAS  Google Scholar 

  • Zare Jeddi M, Rastkari N, Ahmadkhaniha R, Yunesian M, Nabizadeh R, Daryabeygi R (2015) A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption. Environ Sci Pollut Res 22:19518–19528. https://doi.org/10.1007/s11356-015-5076-4

    Article  CAS  Google Scholar 

  • Zhou D, Wang H, Zhang J (2011) Di-n-butyl phthalate (DBP) exposure induces oxidative stress in epididymis of adult rats. Toxicol Ind Health 27(1):65–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarva Mangala Praveena.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, S.M., Teh, S.W., Rajendran, R.K. et al. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration. Environ Sci Pollut Res 25, 11333–11342 (2018). https://doi.org/10.1007/s11356-018-1652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1652-8

Keywords

Navigation