Skip to main content

Advertisement

Log in

Levels of urinary metabolites of four PAHs and cotinine determined in 1016 volunteers living in Central Italy

  • Straightforward approach in Cultural Heritage and Environment studies - Multivariate Analysis and Chemometry
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAH) are products of the incomplete combustion of organic materials, and exposure of the general population to PAH is ubiquitous. They are also present in tobacco smoke. Some PAH are classified as carcinogens. Urine samples from 747 non-smoking and 269 smoking subjects living in the same area of Central Italy were analyzed in order to determine reference values for PAHs exposure of a general population. The concentration of cotinine, urinary metabolite of nicotine was also measured in these samples in order to classify the subjects as smokers or not. The median concentration and 50th percentile in females was higher than in males for all metabolites; 1- and 2-hydroxynaphtalene (1-OHNAP and 2-OHNAP) and 1-hydroxypyrene (1-OHPy), are significantly higher in smokers; on the other side 3-hydroxybenzo[a]pyrene (3-OHBaPy) and 6-hydroxynitropyrene (6-OHNPy) do not correlate with the cotinine concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ACGIH (American Conference of Governmental Industrial Hygienists) (2014) Threshold limit values (TLVs) for chemical substances and physical agents and biological exposure indices (BEIs)

  • Ancona C, Bauleo L, Biscotti G, Bocca B, Caimi S, Cruciani F, Di Lorenzo S, Petrolati M, Pino A, Piras G, Pizzabiocca A, Rabbiosi S, Ruggieri F, Salatino C, Alimonti A, Forastiere F (2016) A survey on lifestyle and level of biomarkers of environmental exposure in residents in Civitavecchia (Italy). Ann Ist Super Sanita 52(4):488–494. https://doi.org/10.4415/ann_16_04_05

    Article  Google Scholar 

  • Aprea C, Sciarra G, Bozzi N, Pagliantini M, Perico A, Bavazzano P, Leandri A, Carrieri M, Scapellato ML, Bettinelli M, Bartolucci GB (2008) Reference values of urinary trans,trans-muconic acid: Italian multicentric study. Arch Environ Contam Toxicol 55:329–340. https://doi.org/10.1007/s00244-007-9119-9

    Article  CAS  Google Scholar 

  • Aquilina NJ, Delgado-Saborit JM, Meddings C, Baker S, Harrison RM, Jacob P III, Wilson M, Yu L, Duan M, Benowitz NL (2010) Environmental and biological monitoring of exposures to PAHs and ETS in the general population. Environ Int 36(7):763–771. https://doi.org/10.1016/j.envint.2010.05.015

    Article  CAS  Google Scholar 

  • Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O’Lone RB, Robison SH, Schnatter AR (2013) The use of biomonitoring data in exposure and human health risk assessment: benzene case study. Crit Rev Toxicol 43(2):119–153. https://doi.org/10.3109/10408444.2012.756455

    Article  CAS  Google Scholar 

  • Barbeau D, Maître A, Marques M (2011) Highly sensitive routine method for urinary 3-hydroxybenzo[a]pyrene quantitation using liquid chromatography-fluorescence detection and automated off-line solid phase extraction. Analyst 136:1183–1191. https://doi.org/10.1039/c0an00428f

    Article  CAS  Google Scholar 

  • Bartolomé M, Ramos JJ, Cutanda F, Huetos O, Esteban M, Moraga MR, Calvo E, Gómez BP, González OBE, Castaño A (2015) Urinary polycyclic aromatic hydrocarbon metabolites levels in a representative sample of the Spanish adult population: the BIOAMBIENT.ES project. Chemosphere 135:436–446. https://doi.org/10.1016/j.chemosphere.2014.12.008

    Article  CAS  Google Scholar 

  • Campo L, Vimercati L, Carrus A, Bisceglia L, Pesatori AC, Bertazzi PA, Assennato G, Fustinoni S (2012) Environmental and biologicalmonitoring of PAHs exposure in coke-oven workers at the Taranto plant compared to two groups fromthe general population of Apulia, Italy. Med Lav 103(5):347–360

    Google Scholar 

  • Campo L, Fustinoni S, Consonni D, Pavanello S, Kapkac L, Siwinska E, Mielzyˇnska D, Bertazzi PA (2014) Urinary carcinogenic 4–6 ring polycyclic aromatic hydrocarbons incoke oven workers and in subjects belonging to the generalpopulation: role of occupational and environmental exposure. Int J Hyg Environ Health 217:231–238. https://doi.org/10.1016/j.ijheh.2013.06.005

    Article  CAS  Google Scholar 

  • Eriksson L, Byrne T, Johansson E, Trygg J, Wikstrom C (2013) PCA. In: multi and megavariate data analysis basic principles and application, 3rd edn 2013, UMETRICS, Sweden pp. 33–54

  • Fan R, Ramage R, Wang D, Zhou J, She J (2012) Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid–liquid extraction and liquid chromatography/tandem mass spectrometry. Talanta 93:383–391. https://doi.org/10.1016/j.talanta.2012.02.059

    Article  CAS  Google Scholar 

  • Finklestein MM, Verna DK (2001) Exposure estimation in the presence of nondetectable values: another look. AIHA J 62(2):195–198

    Google Scholar 

  • Hilton DC, Trinidad DA, Hubbard K, Li Z, Sjödin A (2017) Measurement of urinary benzo[a]pyrene tetrols and their relationship to other polycyclic aromatic hydrocarbon metabolites and cotinine in humans. Chemosphere 189:365–372. https://doi.org/10.1016/j.chemosphere.2017.09.077

    Article  CAS  Google Scholar 

  • Hussein I, Abdel S, Mona SMM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2010) Some non-heterocyclic polycyclicaromatic hydrocarbons and some related exposures. Monogr Eval Carcinog Risks Hum 92:765–771

    Google Scholar 

  • Jain RB (2015) Trends and concentrations of selected polycyclic aromatic hydrocarbons in general US population: data from NHANES 2003-2008. Cogent Environ Sci 1(1):1031508. https://doi.org/10.1080/23311843.2015.1031508

    Article  Google Scholar 

  • Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  Google Scholar 

  • Kroll MH, Chesler R, Hagengruber C (1986) Automated determination of urinary creatinine without sample dilution: theory and practice. Clin Chem 32(3):446–452

    CAS  Google Scholar 

  • Lafontaine M, Champmartin C, Simon P, Delsaut P, Funck-Brentano C (2006) 3-Hydroxybenzo[a]pyrene in the urine of smokers and non-smokers. Toxicol Lett 162:181–185. https://doi.org/10.1016/j.toxlet.2005.09.019

    Article  CAS  Google Scholar 

  • Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133. https://doi.org/10.1016/j.mrrev.2007.08.003

    Article  CAS  Google Scholar 

  • Li Z, Romanoff LC, Trinidad DA, Pittman EN, Hilton D, Hubbard K, Carmichael H, Parker J, Calafat AM, Sjödin A (2014) Quantification of twenty-one metabolites of methylnaphthalenes and polycyclic aromatic hydrocarbons in human urine. Anal Bioanal Chem 406(13):3119–3129. https://doi.org/10.1007/s00216-014-7676-0

    Article  CAS  Google Scholar 

  • R core team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/

    Google Scholar 

  • Raponi F, Bauleo L, Ancona C, Forastiere F, Paci E, Pigini D, Tranfo G (2017) Quantification of 1-hydroxypyrene, 1- and 2-hydroxynaphthalene, 3-hydroxybenzo[a]pyrene and 6-hydroxynitropyrene by HPLC-MS/MS in human urine as exposure biomarkers for environmental and occupational surveys. Biomarkers 22(6):575–583. https://doi.org/10.1080/1354750X.2016.1252959

    Article  CAS  Google Scholar 

  • Tranfo G, Pigini D, Paci E, Marini F, Bonanni RC (2017) Association of exposure to benzene and smoking with oxidative damage to nucleic acids by means of biological monitoring of general population volunteers. Environ Sci Pollut Res 24:13885–13894. https://doi.org/10.1007/s11356-016-6366-1

    Article  CAS  Google Scholar 

  • Zhao G, Chen Y, Wang S, Yu J, Wang X, Xie F, Liu H, Xie J (2013) Simultaneous determination of 11monohydroxylated PAHs in human urine by stir bar sorptive extractionand liquid chromatography / tandem mass spectrometry. Talanta 116:822–826. https://doi.org/10.1016/j.talanta.2013.07.071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Tranfo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombolini, F., Pigini, D., Tranfo, G. et al. Levels of urinary metabolites of four PAHs and cotinine determined in 1016 volunteers living in Central Italy. Environ Sci Pollut Res 25, 28772–28779 (2018). https://doi.org/10.1007/s11356-018-1650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1650-x

Keywords

Navigation