Skip to main content
Log in

Intermittent flux from a sand filter for household wastewater and integrated solute transfer to the vadose zone

  • Groundwater under threat from diffuse contaminants: improving on-site sanitation, agriculture and water supply practices
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Depending on the actual number of soil-based on-site wastewater treatment system (OWTS) in an area, on-site sanitation may be a significant source of pollutants and a threat to groundwater. Even in the case of a system functioning correctly, here, a sand filter substituted for the in-situ soil, as the treated effluent may reach to the water table, it is necessary evaluating in situ how much the sand and underneath soil respectively contribute to pollutant removal. On the plot of a household in a small rural community, the functioning of a real scale OWTS was monitored for 1.5 years. This system, composed of a septic tank connected to a 5 × 5 m2 and 0.7-m thick aerobic sand filter was equipped with soil hydrodynamic probes (water content and matrix potential) during construction. By using the instantaneous profile method of water content, the intermittent infiltrated flux was determined across the sand-pack according to position and time. Treated water infiltrates into underneath soil acting as post-treatment. Quality of interstitial liquid from the sand and the soil was analysed each month on a 12-h pumping sample obtained through porous plates. Results of water fluxes and concentrations provide an estimate of the annual flux to the vadose zone and groundwater of metals, nutrients and some organic micro-pollutants (parabens and triclosan) through the OWTS and subsoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • AFNOR (2013) XP DTU 64.1 – Mise en œuvre des dispositifs d’assainissement non collectif (dit autonome) – Maisons d’habitation individuelle jusqu’à vingt pièces principales. Indice de classement. pp 16–603

  • Amy G, Drewes J (2007) Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: fate of wastewater effluent organic matter (EfOM) and trace organic compounds. Environ Monit Assess 129(1–3):19–26

    Article  CAS  Google Scholar 

  • Banerjee G (2011) Underground pollution travel from leach pits of on-site sanitation facilities: a case study. Clean Techn Environ Policy 13:489–497

    Article  CAS  Google Scholar 

  • Beach D, Huntzinger N, McCray JE (2003) Numerical modeling of unsaturated flow in wastewater soil absorption systems. Groundwater Monit Remediat 23(2):64–72

    Article  Google Scholar 

  • Beal CD, Gardner EA, Menzies NW (2005) Process, performance, and pollution potential: a review of septic tank-soil absorption systems. Aust J Soil Res 43(7):781–802

    Article  Google Scholar 

  • Bedinger MS, Fleming JS, Johnson AI (1997) Site characterization and design of on-site septic systems. ASTM, PCN 04–013240-38, STP 1324

  • Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of triclosan and by-products in the environment. Environ Sci Pollut Res 19(4):1044–1065

    Article  CAS  Google Scholar 

  • Borchardt MA, Chyou PH, DeVries EO, Belongia EA (2003) Septic system density and infectious diarrhea in a defined population of children. Environ Health Perspect 111(5):742–748

    Article  Google Scholar 

  • Branchu P, Dumont E, Pétillon G, Gérolin A, Trotzier C, Burnel R (2016) ANC - Études de sol à la parcelle: les enseignements d’une enquête nationale. DGALN, CEREMA, mars 2016, 6 p

  • Bremer JE, Harter T (2012) Domestic wells have high probability of pumping septic tank leachate. Hydrol Earth Syst Sci 16(8):2453–2467

    Article  Google Scholar 

  • Brigand S, Lesieur V (2008) Assainissement non collectif: mise en œuvre, contrôles réglementaires et entretien. Le Moniteur, Paris 257 p

    Google Scholar 

  • Canosa P, Rodríguez I, Rubí E, Negreira N, Cela R (2006) Formation of halogenated by-products of parabens in chlorinated water. Anal Chim Acta 575:106–113

    Article  CAS  Google Scholar 

  • Carman PC (1939) Permeability of saturated sand, soils and clays. J Agric Sci 29:263–273

    Article  Google Scholar 

  • Carroll S, Goonetilleke A, Thomas E, Hargreaves M, Frost R, Dawes L (2006) Integrated risk framework for onsite wastewater treatment systems. Environ Manag 38(2):286–303

    Article  Google Scholar 

  • Cha J, Cupples AM (2009) Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water Res 43:2522–2530

    Article  CAS  Google Scholar 

  • Cha J, Cupples AM (2010) Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils. Chemosphere 81:494–499

    Article  CAS  Google Scholar 

  • Chapuis R (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795

    Article  Google Scholar 

  • Charles K, Ashbolt N, Roser D, McGuinness R, Deere D (2005) Effluent quality from 200 on-site sewage systems: design values for guidelines. Water Sci Technol 51(10):163–169

    Article  CAS  Google Scholar 

  • Chu S, Metcalfe CD (2007) Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J Chromatogr A 1164:212–218

    Article  CAS  Google Scholar 

  • Conn K, Barber LB, Brown GK, Siegrist RL (2006) Occurrence and fate of organic contaminants during onsite wastewater treatment. Environ Sci Technol 40:7358–7366

    Article  CAS  Google Scholar 

  • Crites RC, Tchobanoglous G (1998) Small and decentralized wastewater systems. McGraw-Hill Publishing Company, Boston

    Google Scholar 

  • Darby J, Tchobanoglous G, Nor MA, Maciolek D (1996) Shallow intermittent sand filtration performance evaluation. Small Flows J 2(1):3–15

    Google Scholar 

  • Dawes L, Goonetilleke A (2003) An investigation into the role of site and soil characteristics in onsite sewage treatment. Environ Geol 44(4):467–477

    Article  CAS  Google Scholar 

  • Du B, Price AE, Scott WC, Kristofco LA, Ramirez AJ, Chambliss CK, Yelderman JC, Brooks BW (2014) Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Sci Total Environ 466-467:976–984

    Article  CAS  Google Scholar 

  • Emerick RW, Test RM, Tchohanglous G, Darby J (1997) Shallow intermittent sand filtration: microorganism removal. Small Flows J 3(1):12–22

    Google Scholar 

  • EPA (2005) Water quality in Ireland, 2001–2003. Environmental Protection Agency, Wexford

    Google Scholar 

  • Erickson AJ, Gulliver JS, Weiss PT (2007) Enhanced sand filtration for storm water phosphorus removal. J Environ Eng 133(5):485–497

    Article  CAS  Google Scholar 

  • Fourie AB, van Ryneveld MB (1995) The fate in the subsurface of contaminants associated with on-site sanitation: a review. Water SA 21(2):101–111

    CAS  Google Scholar 

  • Geary PM, Whitehead JH (2001) Groundwater contamination from on-site domestic wastewater management systems in a coastal catchment. In: Proceedings of the Ninth National Symposium on Individual and Small Community Sewage Systems, Fort Worth, Texas, American Society of Agricultural Engineers

  • Gill LW, O'Luanaigh N, Johnston PM, Misstear B, O'Suilleabhain C (2009) Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems. Water Res 43:2739–2749

    Article  CAS  Google Scholar 

  • Green RE, Ahuja LR, Chong SK (1985) Hydraulic conductivity, diffusivity, and sorptivity of unsaturated soils: field methods. In: Klute A (ed) Methods of soil analysis. Part 1. Agronomy, vol 9, pp 771–798

    Google Scholar 

  • Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39:1420–1426

    Article  CAS  Google Scholar 

  • Hillel D (1987) Unstable flow in layered soils: A review. Hydrol Process 1(2):143–147

  • Jayarathne R, Yuen STS, Connor MA, Pivonka P, Pharoah A (2012) A hydrological study of on-site soil absorption systems. ICE proceedings, paper 1100029. Water Manage 166(1):43–53

    Google Scholar 

  • Lawrence AR, MacDonald DMJ, Howard AG, Barrett MH, Pedley S, Ahmed KM, Nalubega M (2001) ARGOSS 2001 – Guidelines for assessing the risk to groundwater from on-site sanitation. British Geological Survey Commissioned Report, CR/01/142, 97 p

  • Levett KJ, Vanderzalm JL, Page DW, Dillon PJ (2010) Factors affecting the performance and risks to human health of on-site wastewater treatment systems. Water Sci Technol 62(7):1499–1509

    Article  CAS  Google Scholar 

  • Liénard A, Guellaf H, Boutin C (2001) Choice of the sand for sand filter used for secondary treatment of wastewater. Water Sci Technol 44:189–196

    Article  Google Scholar 

  • Maillard K (1998) Les filtres à sable verticaux en assainissement autonome regroupé: rôle des conditions opératoires, des écoulements et des transferts gazeux sur les performances épuratoires et le vieillissement. PhD, Université de Rennes

  • Morales VL, Parlange JY, Steenhuis TS (2010) Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J Hydrol 393(1–2):29–36

    Article  CAS  Google Scholar 

  • Nasri B, Fouché O, Ramier D (2014) Monitoring infiltration under a real on-site treatment system of domestic wastewater and evaluation of soil transfer function (Paris Basin, France). Environ Earth Sci 73(11):7435–7444

    Article  Google Scholar 

  • Nasri B, Fouché O, Torri D (2015) Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131:99–108

    Article  Google Scholar 

  • Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51:1194–1199

  • Parlange JY, and Hill DE (1976) Theoretical analysis of wetting front instability in soils. Soil Sci 122:236–239

  • Pell M, Nyberg F (1989a) Infiltration of wastewater in a newly started pilot sand-filter system: I. Reduction of organic matter and phosphorus. J Environ Qual 18:451–457

    Article  CAS  Google Scholar 

  • Pell M, Nyberg F (1989b) Infiltration of wastewater in a newly started pilot sand-filter system: III. Transformation of nitrogen. J Environ Qual 18:463–467

    Article  CAS  Google Scholar 

  • Piao C, Chen L, Wang Y (2014) A review of the extraction and chromatographic determination methods for the analysis of parabens. J Chromatogr B 969:139–148

    Article  CAS  Google Scholar 

  • Pivetz BE, and Steenhuis TS (1995) Soil and matrix macropore biodegradation of 2, 4-D. J Environ Qual 24:564–570

  • Pujari PR, Padmakar C, Labhasetwar PK, Mahore P, Ganguly AK (2012) Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings—a case study from India. Environ Monit Assess 184(1):251–263

    Article  CAS  Google Scholar 

  • Raats PAC (1973) Steady upward and downward flows in a class of unsaturated soils. Soil Sci 115(6):409–420

  • Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) (2012) Standard methods for the examination of water and wastewater, 22th edn. American Public Health Association, American Water Works Association, Washington, DC

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Richards S, Paterson E, Withers PJA, Stutter M (2016) Septic tank discharges as multi-pollutant hotspots in catchments. Sci Total Environ 542:854–863

    Article  CAS  Google Scholar 

  • Robertson (2008) Irreversible phosphorus sorption in septic tank plumes? Groundwater 46(1):51–60

    CAS  Google Scholar 

  • Robertson WD, Cherry JA, Sudicky EA (1991) Ground water contamination from two small septic systems on sand aquifers. Groundwater 29(1):82–92

    Article  CAS  Google Scholar 

  • Saillé C, Fouché O, Chevrier R-M (2010) Surveiller l'évolution temporelle des éléments majeurs pour mieux gérer les ressources locales en eau souterraine. Cas de l'aquifère Jurassique à la limite Puisaye-Forterre (Yonne). Géologues 163:93–98

    Google Scholar 

  • SCCS (2010) Scientific committee on consumer safety. Opinion on: triclosan antimicrobial, resistance (SCCP/1251/09) adopted by the SCCP during the 7th plenary on 22 June 2010

  • Selker J, Leclerq P, Parlange JY, Steenhuis T (1992) Fingered flow in two dimensions: 1 Measurement of matric potential. Water Resour Res 28(9):2513–2521

  • Siegrist RL (2017) Decentralized water reclamation engineering. A curriculum workbook, 1st edn. Springer, Berlin, 347 p

    Google Scholar 

  • Siegrist RL, McCray JE, Lowe KS (2004) Wastewater infiltration into soil and the effects of infiltrative surface architecture. Small Flows J 5(1):29–39

    Google Scholar 

  • Teerlink J, Martınez-Hernandez V, Higgins CP, Drewes JE (2012) Removal of trace organic chemicals in onsite wastewater soil treatment units: a laboratory experiment. Water Res 46:5174–5184

    Article  CAS  Google Scholar 

  • Thomas JF, Gomboso J, Oliver JE, Richie VA (1997) Wastewater re-use, storm water management, and the national water reform agenda, report No1. CSIRO, Canberra

    Google Scholar 

  • Tilley E, Lüthi C, Morel A, Zurbrügg C, Schertenleib R (2008) Compendium of sanitation systems and technologies. Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland, 1st edn. http://www.iwa-network.org/wp-content/uploads/2016/06/Compendium-Sanitation-Systems-and-Technologies.pdf

  • University of Wisconsin (1978) Management of small waste flows. USEPA (United States Environmental Protection Agency, Cincinnati, Ohio, USA. EPA/600/2–78-173

  • USEPA (1986) Septic systems and ground-water protection: an executive’s guide. Technical Report. Office of Groundwater Protection, USEPA (United States Environmental Protection Agency), Washington, DC

  • USEPA (2002) Onsite wastewater treatment systems manual. Office of Water, Office of Research and Development, Washington, DC, USA. EPA/625/R-00/008

  • Van Cuyk S, Siegrist R, Logan A, Masson S, Fischer E, Figueroa L (2001) Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems. Water Res 35(4):953–964

    Article  Google Scholar 

  • Verstraeten IM, Fetterman GS, Meyer MT, Bullen T, Sebree SK (2005) Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste. Ground Water Monit Remediat 25(2):107–117

    Article  CAS  Google Scholar 

  • Watson KK (1966) An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resour Res 2(4):709–715

    Article  Google Scholar 

  • Weihermüller L, Siemens J, Deurer M, Knoblauch S, Rupp H, Göttlein A, Pütz T (2007) In situ soil water extraction: a review. J Environ Qual 36:1735–1748

    Article  CAS  Google Scholar 

  • Weiss P, Eveborn D, Kärrman E, Gustafsson JP (2008) Environmental systems analysis of four on-site wastewater treatment options. Resour Conserv Recycl 52:1153–1161

    Article  Google Scholar 

  • Withers PJA, May L, Jarvie HP, Jordan P, Doody D, Foy RH, Bechmann M, Cooksley S, Dils R, Deal N (2012) Nutrient emissions to water from septic tank systems in rural catchments: uncertainties and implications for policy. Environ Sci Policy 11:102–114

    Google Scholar 

Download references

Acknowledgements

For the financial and scientific support, the authors thank the GESSOL program (grant MEEDDM-CDGDD-DRI R-2011-8C-0028-A0, French Ministry of Ecology, French Agency for Environment Management and Energy ADEME) through the ANCRES project, and the French Ministry of Foreign Affairs for student grant no 756564K. The authors are grateful to the owners of the house, Guillaume and Carole. We also warmly thank Nadia Guerguadj, Christophe Saillé, Nicolas Forquet, Vivien Dubois, Emilie Caupos and Mohamed Saad, for technical help in field and laboratory work. Thanks to the SPANCs (Public Service of OSS) of Tours and Toucy cities (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Nasri.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, B., Fouché, O. Intermittent flux from a sand filter for household wastewater and integrated solute transfer to the vadose zone. Environ Sci Pollut Res 26, 2167–2183 (2019). https://doi.org/10.1007/s11356-018-1466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1466-8

Keywords

Navigation