Skip to main content
Log in

Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly(L-glutamic acid)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper explored biochar modification to enhance biochar’s ability to adsorb hexavalent chromium from aqueous solution. The ramie stem biomass was pyrolyzed and then treated by β-cyclodextrin/poly(L-glutamic acid) which contained plentiful functional groups. The pristine and modified biochar were characterized by FTIR, X-ray photoelectron spectroscopy, specific surface area, and zeta potential measurement. Results indicated that the β-cyclodextrin/poly(L-glutamic acid) was successfully bound to the biochar surface. Batch experiments were conducted to investigate the kinetics, isotherm, thermodynamics, and adsorption/desorption of Cr(VI). Adsorption capacities of CGA-biochar were significantly higher than that of the untreated biochar, and its maximum adsorption capacity could reach up to 197.21 mg/g at pH 2.0. Results also illustrated that sorption performance depended on initial solution pH; in addition, acidic condition was beneficial to the Cr(VI) uptake. Furthermore, the Cr(VI) uptake was significantly affected by the ion strength and cation species. This study demonstrated that CGA-biochar could be a potential adsorbent for Cr(VI) pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angelini LG, Tavarini S (2013) Ramie [Boehmeria Nivea (L.) gaud.] as a potential new fibre crop for the Mediterranean region: growth, crop yield and fibre quality in a long-term field experiment in Central Italy. Ind Crop Prod 51:138–144

    Article  Google Scholar 

  • Azarudeen RS, Subha R, Jeyakumar D, Burkanudeen AR (2013) Batch separation studies for the removal of heavy metal ions using a chelating terpolymer: synthesis, characterization and isotherm models. Sep Purif Technol 116:366–377

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Tay ASH, Tan PY et al (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Tay WJD et al (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Arıca MY (2005) Ethylenediamine grafted poly (glycidylmethacrylate-co-methylmethacrylate) adsorbent for removal of chromate anions. Sep Purif Technol 45:192–199

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  Google Scholar 

  • Betts AR, Ning C, Hamilton JG, Derek P (2013) Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environ Sci Technol 47:14350–14357

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Hestekin JA, Brushaber P et al (1998) Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. J Membr Sci 141:121–135

    Article  CAS  Google Scholar 

  • Chen Z, Xiao X, Chen B, Zhu L (2014) Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ Sci Technol 49:309–317

    Article  CAS  Google Scholar 

  • Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CI basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–531

    Article  CAS  Google Scholar 

  • Du F, Meng H, Xu K et al (2014) CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly (ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces 113:230–236

    Article  CAS  Google Scholar 

  • Fu R, Zhang X, Xu Z, et al (2017) Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism. Sep Purif Technol 174:362–371

  • Gan C, Liu Y, Tan X et al (2015) Effect of porous zinc–biochar nanocomposites on Cr (VI) adsorption from aqueous solution. RSC Adv 5:35107–35115

    Article  CAS  Google Scholar 

  • Ghadim EE, Manouchehri F, Soleimani G et al (2013) Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 8:e79254

    Article  Google Scholar 

  • Hu X, Liu Y, Zeng G et al (2014) Effects of background electrolytes and ionic strength on enrichment of Cd (II) ions with magnetic graphene oxide–supported sulfanilic acid. J Colloid Interface Sci 435:138–144

    Article  CAS  Google Scholar 

  • Huang DL, Zeng GM, Feng CL et al (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951

    Article  CAS  Google Scholar 

  • Huang X, Liu Y, Liu S et al (2016) Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Adv 6:94–104

    Article  CAS  Google Scholar 

  • Inbaraj BS, Wang JS, Lu JF et al (2009) Adsorption of toxic mercury (II) by an extracellular biopolymer poly (γ-glutamic acid). Bioresour Technol 100:200–207

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Pullammanappallil P et al (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101:8868–8872

    Article  CAS  Google Scholar 

  • Jiang L, Liu Y, Zeng G et al (2016) Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: external influence and adsorption mechanism. Chem Eng J 284:93–102

    Article  CAS  Google Scholar 

  • Jiang L, Liu Y, Liu S et al (2017a) Fabrication of β-cyclodextrin/poly(L-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol. Chem Eng J 308:597–605

    Article  CAS  Google Scholar 

  • Jiang L, Liu Y, Liu S et al (2017b) Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon. Environ Sci Technol 51:6352–6359

    Article  CAS  Google Scholar 

  • Kennedy AR, Kirkhouse JBA, Mccarney KM et al (2004) Supramolecular motifs in s-block metal-bound sulfonated monoazo dyes, part 1: structural class controlled by cation type and modulated by sulfonate aryl ring position. Chemistry (Easton) 10:4606–4615

    CAS  Google Scholar 

  • Li M, Liu Y, Liu S et al (2017a) Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms. Chem Eng J 319:219–228

    Article  CAS  Google Scholar 

  • Li M, Liu Y, Zeng G et al (2017b) Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: influencing factors and uptake mechanism. J Colloid Interface Sci 485:269–279

    Article  CAS  Google Scholar 

  • Liu S, Tan X, Liu Y et al (2016) Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Adv 6:5871–5880

    Article  CAS  Google Scholar 

  • Ma Y, Liu W-J, Zhang N et al (2014) Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour Technol 169:403–408

    Article  CAS  Google Scholar 

  • Melancon MP, Lu W, Huang Q et al (2010) Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Biomaterials 31:6567–6573

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Qian L, Chen B (2014) Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J Agric Food Chem 62:373–380

    Article  CAS  Google Scholar 

  • Qu Y, Zhang X, Xu J et al (2014) Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Sep Purif Technol 136:10–17

    Article  CAS  Google Scholar 

  • Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  • Suguihiro TM, de Oliveira PR, Mangrich AS et al (2013) An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresour Technol 143C:40–45

    Article  Google Scholar 

  • Tan X, Liu Y, Gu Y et al (2015a) Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environ Sci Pollut Res Int 22:12597

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G et al (2015b) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Tan X, Liu S, Liu Y et al (2016) One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste. Sci Rep 6:39691

    Article  CAS  Google Scholar 

  • Tang L, Zeng GM, Shen GL et al (2008) Rapid detection of Picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42:1207–1212

    Article  CAS  Google Scholar 

  • Trazzi PA, Leahy JJ, Hayes MHB, Kwapinski W (2016) Adsorption and desorption of phosphate on biochars. J Environ Chem Eng 4:37–46

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  Google Scholar 

  • Wei S, Li D, Huang Z et al (2013) High-capacity adsorption of Cr (VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone. Bioresour Technol 134:407–411

    Article  CAS  Google Scholar 

  • Yakout SM (2015) Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediat J 19:171–182

    Article  CAS  Google Scholar 

  • Yan S, Wang T, Feng L et al (2014a) Injectable in situ self-cross-linking hydrogels based on poly (l-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15:4495–4508

    Article  CAS  Google Scholar 

  • Yan S, Zhang X, Sun Y et al (2014b) In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery. Colloids Surf B Biointerfaces 113:302–311

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y et al (2012) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435:567–572

    Article  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR et al (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51521006 and 51609268), the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2016B135), and the Key Project of Technological Innovation in the Field of Social Development of Hunan Province, China (Grant Nos. 2016SK2010 and 2016SK2001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobo Liu or Yunguo Liu.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOCX 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Liu, S., Liu, Y. et al. Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly(L-glutamic acid). Environ Sci Pollut Res 24, 23528–23537 (2017). https://doi.org/10.1007/s11356-017-9833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9833-4

Keywords

Navigation