Skip to main content
Log in

Preparation and characterization of glass hollow fiber membrane for water purification applications

  • Recent Trends for the Removal of Coloured Particles in Industrial Wastewaters
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min−1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m−2 h−1 bar−1. The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander S, Morrow L, Lord AM, Dunnill CW, Barron AR (2015) pH-responsive octylamine coupling modification of carboxylated aluminium oxide surfaces. J Mater Chem A 3(18):10052–10059

    Article  CAS  Google Scholar 

  • Boom RM, Wienk IM, van den Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73(2):277–292

    Article  CAS  Google Scholar 

  • Colantuono A, DalVecchio S, Mascolo G, Pansini M (1996) Dilatometric behaviour of chabazite. J Therm Anal 47(1):281–289

    Article  CAS  Google Scholar 

  • Dell’Agli G, Ferone C, Mascolo G, Pansini M (1999) Dilatometry of Na-, K-, Ca- and NH4-clinoptilolite. Thermochim Acta 336(1–2):105–110

    Article  Google Scholar 

  • Enke D, Janowski F, Schwieger W (2003) Porous glasses in the 21st century—a short review. Microporous Mesoporous Mater 60(1–3):19–30

    Article  CAS  Google Scholar 

  • Han KN, Bernardi S, Wang L, Searles DJ (2015) Water diffusion in zeolite membranes: molecular dynamics studies on effects of water loading and thermostat. J Membr Sci 495:322–333

    Article  CAS  Google Scholar 

  • Hasanuzzaman M., A. Rafferty, M. Sajjia, A. G. Olabi (2016) Production and treatment of porous glass materials for advanced usage. Reference Module in Materials Science and Materials Engineering, Elsevier

  • Jamil SM, Othman MHD, Rahman MA, Jaafar J, Ismail AF, Li K (2015) Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. J Eur Ceram Soc 35(1):1–22

    Article  CAS  Google Scholar 

  • Kingsbury BFK, Li K (2009) A morphological study of ceramic hollow fibre membranes. J Membr Sci 328(1–2):134–140

    Article  CAS  Google Scholar 

  • Kukizaki, M (2010) Large-scale production of alkali resistant Shirasu porous glass (SPG) membranes: influence of ZrO2 addition on crystallization and phase separation in Na2O-CaO-Al2O3-B2O3-SiO2 glasses, and alkali durability and pore morphology of the membranes. J Membr Sci 360(1–2):426–435

  • Kukizaki M, Goto M (2006) Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J Membr Sci 281(1–2):386–396

    Article  CAS  Google Scholar 

  • Kukizaki M, Goto M (2007) Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification. J Membr Sci 299(1–2):190–199

    Article  CAS  Google Scholar 

  • Kukizaki M, Nakashima T (2004) Acid leaching process in the preparation of porous glass membranes from phase-separated glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 system. Membrane 29(5):301–308

    Article  CAS  Google Scholar 

  • Lai YT, Sato M, Ohta S, Akamatsu K, Nakao S, Sakai Y, Ito T (2015) Preparation of uniform-sized hemoglobin-albumin microspheres as oxygen carriers by Shirasu porous glass membrane emulsification technique. Colloids Surf B Biointerfaces 127:1–7

    Article  CAS  Google Scholar 

  • Lee M, Wang B, Wu ZT, Li K (2015) Formation of micro-channels in ceramic membranes—spatial structure, simulation, and potential use in water treatment. J Membr Sci 483:1–14

    Article  CAS  Google Scholar 

  • Li Y, Chen H, Liu J, Yang W (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277(1–2):230–239

    Article  CAS  Google Scholar 

  • Liu R, Ma GH, Meng FT, Su ZG (2005) Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release 103(1):31–43

    Article  CAS  Google Scholar 

  • Lopes AC, Martins P, Lanceros-Mendez S (2014) Aluminosilicate and aluminosilicate based polymer composites: present status, applications and future trends. Prog Surf Sci 89(3–4):239–277

    Article  CAS  Google Scholar 

  • Ma GH, Nagai M, Omi S (1999) Study on preparation and morphology of uniform artificial polystyrene-poly(methyl methacrylate) composite microspheres by employing the SPG (Shirasu porous glass) membrane emulsification technique. J Colloid Interface Sci 214(2):264–282

    Article  CAS  Google Scholar 

  • Mohamed MH, Othman MHD, Abd Mutalib M, Rahman M, Jaafar J, Ismail AF, Mohamed Dzahir MIH (2016) Structural control of NiO-YSZ/LSCF-YSZ dual-layer hollow fiber membrane for potential syngas production. Int J Appl Ceram Technol 13(5):799–809

    Article  CAS  Google Scholar 

  • Paiman SH, Rahman MA, Othman MHD, Ismail AF, Jaafar J, Aziz AA (2015) Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Ceram Int 41(10):12543–12553

    Article  CAS  Google Scholar 

  • Palenta T, Fuhrmann S, Greaves GN, Schwieger W, Wondraczek L (2015) Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass. J Chem Phys 142(8):084503

    Article  Google Scholar 

  • Shameli K, Bin Ahmad M, Zargar M, Yunus WMZW, Ibrahim NA (2011) Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomedicine 6:331–341

    Article  CAS  Google Scholar 

  • Shao J, Zhan ZY, Li JG, Wang ZB, Li K, Yan YS (2014) Zeolite NaA membranes supported on alumina hollow fibers: effect of support resistances on pervaporation performance. J Membr Sci 451:10–17

    Article  CAS  Google Scholar 

  • Sukas S, Tiggelaar RM, Desmet G, Gardeniers JGE (2013) Fabrication of integrated porous glass for microfluidic applications. Lab Chip 13(15):3061–3069

  • Tan XY, Li K (2011) Inorganic hollow fibre membranes in catalytic processing. Curr Opin Chem Eng 1(1):69–76

    Article  CAS  Google Scholar 

  • Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11(12):975–996

    Article  CAS  Google Scholar 

  • Vladisavljevic GT, Schubert H (2002) Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. Desalination 144(1–3):167–172

    Article  CAS  Google Scholar 

  • Wang YJ, Tang Y, Dong AG, Wang XD, Ren N, Shan W, Gao Z (2002) Self-supporting porous zeolite membranes with sponge-like architecture and zeolitic microtubes. Adv Mater 14(13–14):994–997

    Article  CAS  Google Scholar 

  • Wei CC, Chen OY, Liu Y, Li K (2008) Ceramic asymmetric hollow fibre membranes-one step fabrication process. J Membr Sci 320(1–2):191–197

    Article  CAS  Google Scholar 

  • Wondraczek L, Gao GJ, Moncke D, Selvam T, Kuhnt A, Schwieger W, Palles D, Kamitsos EI (2013) Thermal collapse of SAPO-34 molecular sieve towards a perfect glass. J Non-Cryst Solids 360:36–40

    Article  CAS  Google Scholar 

  • Xiao M, Hu XJ, Gong Y, Gao D, Zhang P, Liu QX, Liu Y, Wang MC (2015) Solid transformation synthesis of zeolites from fly ash. RSC Adv 5(122):100743–100749

    Article  CAS  Google Scholar 

  • Zhang C, Zhang K, Xu L, Labreche Y, Kraftschik B, Koros WJ (2014) Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AICHE J 60(7):2625–2635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from various parties, namely Higher Institution Centre of Excellence (HICoE) Research Grant (R. J090301.7846.4J178) and Universiti Teknologi Malaysia (UTM) through the Research University Grants (Q.J130000.2446.03G37, Q.J130000.2546.12H22). Appreciation also goes to UTM Research Management Centre for both financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhlis A. Rahman.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhtar, S.N.N.M., Rahman, M.A., Ismail, A.F. et al. Preparation and characterization of glass hollow fiber membrane for water purification applications. Environ Sci Pollut Res 24, 15918–15928 (2017). https://doi.org/10.1007/s11356-017-9405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9405-7

Keywords

Navigation