Skip to main content

Advertisement

Log in

Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5–0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B[a]An:

Benz[a]anthracene

B[b]Fl:

Benzo[b]fluoranthene

B[a]P:

Benzo[a]pyrene

B[ghi]Pe:

Benzo[g,h,i]perylene

β-gal:

β-galactosidase

Chr:

Chrysene

DiB [a,h]An:

Dibenz[a,h]anthracene

EOM:

Extractable organic matter

Fla.:

Fluoranthene

Flu:

Fluorene

FP:

Fine particles

FP-I:

Fine particles collected at the industrial site

FP-R:

Fine particles collected at the rural site

IF:

Induction factor

I.I:

Industrial impact

InPy:

Indeno[1,2,3-cd]pyrene

MR:

Mutagenicity ratio

Nap:

Naphthalene

PAHs:

Polycyclic aromatic hydrocarbons

PM:

Particulate matter

PM2.5 and PM10 :

PM with equivalent aerodynamic diameter below 2.5 and 10 μm, respectively

Pyr:

Pyrene

References

  • Abdel-Massih RM, Melki PN, Afif C, Daoud Z (2013) Detection of genotoxicity in hospital wastewater of a developing country using SOS chromotest and Ames fluctuation test. J Environ Eng Ecol Sci 2(1):4. doi:10.7243/2050-1323-2-4

    Article  Google Scholar 

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017. doi:10.1016/j.envint.2004.04.004

    Article  CAS  Google Scholar 

  • Afif C, Chélala C, Borbon A, Abboud M, Adjizian-Gérard J, Farah W, Jambert C, Zaarour R, Saliba NB, Perros PE, Rizk T (2008) SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Qual Atmos Health 1:167–178

  • Akyüz M, Cabuk H (2008) Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Sci Total Environ 405(1–3):62–70. doi:10.1016/j.scitotenv.2008.07.026

    Article  Google Scholar 

  • André V, Billet S, Pottier D, Le Goff J, Pottier I, Garçon G, Shirali P, Sichel F (2011) Mutagenicity and genotoxicity of PM2.5 issued from an urbano-industrialized area of Dunkerque (France). J Appl Toxicol 31(2):131–138. doi:10.1002/jat.1572

    Google Scholar 

  • Aoun J, Saleh N, Waked M, Salamé J, Salameh P (2013) Lung cancer correlates in Lebanese adults: a pilot case–control study. J Epidemiol Glob Health 3(4):235–244. doi:10.1016/j.jegh.2013.06.005

    Article  Google Scholar 

  • Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 50(5):575–587

    Article  CAS  Google Scholar 

  • Bełcik M, Trusz-Zdybek A, Galas E, Piekarska K (2014) Mutagenicity of organic pollutants adsorbed on suspended particulate matter in the center of Wrocław (Poland). Atmos Environ 95:620–628. doi:10.1016/j.atmosenv.2014.05.022

    Article  Google Scholar 

  • Billet S, Garçon G, Dagher Z, Verdin A, Ledoux F, Cazier F, Courcot D, Aboukaïs A, Shirali P (2007) Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ res 105:212–223. doi:10.1016/j.envres.2007.03.001

    Article  CAS  Google Scholar 

  • Borgie M (2013) Etude des particules fines et ultrafines en suspension dans l’air au Liban : caractérisation physicochimique et évaluation des effets toxicologiques sur des cellules pulmonaires humaines BEAS-2B. PhD thesis, Université du Littoral Côte d’Opale, Dunkerque, p 295

  • Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D (2015) Comparison between ultrafine and fine particulate matter collected in Lebanon: chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environ Pollut 205:250–260. doi:10.1016/j.envpol.2015.05.027

    Article  CAS  Google Scholar 

  • Borgie M, Ledoux F, Dagher Z, Verdin A, Cazier F, Courcot L, Shirali P, Greige-Gerges H, Courcot D (2016) Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon. Atmos Res 180:274–286. doi:10.1016/j.atmosres.2016.06.001

    Article  CAS  Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22(1):2–15. doi:10.1016/0016-7037(61)90069-2

    Article  CAS  Google Scholar 

  • Brits E, Schoeters G, Verschaeve L (2004) Genotoxicity of PM10 and extracted organics collected in an industrial, urban and rural area in Flanders, Belgium. Environ Res 96(2):109–118. doi:10.1016/j.envres.2004.03.006

    Article  CAS  Google Scholar 

  • Cazier F, Dewaele D, Delbende A, Nouali H, Garçon G, Verdin A, Courcot D, Bouhsina S, Shirali P (2011) Sampling analysis and characterization of particles in the atmosphere of rural, urban and industrial areas. Proc Environ Sci 4:218–227. doi:10.1016/j.proenv.2011.03.026

    Article  CAS  Google Scholar 

  • Cazier F, Genevray P, Dewaele D, Nouali H, Verdin A, Ledoux F, Courcot D, Hachimi A, Courcot L, Billet S, Bouhsina S, Shirali P (2016) Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: organic compounds. J Environ Sci. doi:10.1016/j.jes.2016.01.014

  • Cecinato A, Guerriero E, Balducci C, Muto V (2014) Use of the PAH fingerprints for identifying pollution sources. Urban Climate 10(4):630–643. doi:10.1016/j.uclim.2014.04.004

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71. doi:10.1016/S0065-2164(08)70052-2

  • Chen SJ, Su HB, Chang JE, Lee WJ, Huang KL, Hsieh LT, Lin CC (2007) Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ 41(6):1209–1220. doi:10.1016/j.atmosenv.2006.09.041

    Article  CAS  Google Scholar 

  • Chen Y, Cao J, Zhao J, Xu H, Arimoto R, Wang G, Han Y, Shen Z, Li G (2014) n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: concentrations, seasonal variations, and sources. Sci Total Environ 470–471:9–18. doi:10.1016/j.scitotenv.2013.09.033

    Article  Google Scholar 

  • Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567(2–3):347–399. doi:10.1016/j.mrrev.2004.08.002

    Article  CAS  Google Scholar 

  • Cooper JE, Bray EE (1963) A postulated role of fatty acids in petroleum formation. Geochim Cosmochim Acta 27(11):1113–1127. doi:10.1016/0016-7037(63)90093-0

    Article  CAS  Google Scholar 

  • Daher N, Saliba NA, Shihadeh AL, Jaafar M, Baalbaki R, Sioutas C (2013) Chemical composition of size-resolved particulate matter at near-freeway and urban background sites in the greater Beirut area. Atmos Environ 80:96–106. doi:10.1016/j.atmosenv.2013.08.004

    Article  CAS  Google Scholar 

  • Dehoog J, Osan J, Szaloki I, Eyckmans K, Worobiec A, Ro C, Vangrieken R (2005) Thin-window electron probe X-ray microanalysis of individual atmospheric particles above the North Sea. Atmos Environ 39(18):3231–3242. doi:10.1016/j.atmosenv.2005.02.025

    Article  CAS  Google Scholar 

  • De La Torre-Roche RJ, Lee WY, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958. doi:10.1016/j.jhazmat.2008.07.089

    Article  Google Scholar 

  • Demetriou CA, Vineis P (2015) Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions. J Thorac Dis 7(1):67–95. doi:10.3978/j.issn.2072-1439.2014.12.31

    Google Scholar 

  • El-Fadel M, Bou-Zeid E (2000) Transportation emissions in Lebanon: extent and mitigation. Fifth International Conference on Urban Transport and the Environment for the 21st Century Southampton, GB, Wessex Institute of Technology. 149–158

  • Erel Y, Tirosh O, Kessler N, Dayan U, Belkin S, Stein M, Sandler A, Schauer JJ (2013) Atmospheric particulate matter (PM) in the Middle East: toxicity, trans-boundary transport, and influence of synoptic conditions. In: Censi P, Darrah T, Erel Y (eds) Medical geochemistry. Springer, Dordrecht, pp 31–46. doi:10.1007/978-94-007-4372-4_3

  • Feng S, Gao D, Liao F, Zhou F, Wang X (2016) The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 128:67–74. doi:10.1016/j.ecoenv.2016.01.030

    Article  CAS  Google Scholar 

  • Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, Gilardoni S (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15(14):8217–8299. doi:10.5194/acp-15-8217-2015

    Article  CAS  Google Scholar 

  • Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44(2):141–146. doi:10.1016/j.atmosenv.2009.10.016

    Article  CAS  Google Scholar 

  • Gilli G, Pignata C, Schilirò T, Bono R, La Rosa A, Traversi D (2007) The mutagenic hazards of environmental PM2.5 in Turin. Environ Res 103(2):168–175. doi:10.1016/j.envres.2006.08.006

  • Gogou A, Stratigakis N, Kanakidou M, Stephanou EG (1996) Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Org Geochem 25(1–2):79–96. doi:10.1016/S0146-6380(96)00105-2

    Article  CAS  Google Scholar 

  • Greer WL (2003) Interactions among gaseous pollutants from cement manufacture and their control technologies. R&D Serial No. 2728, Portland Cement Association, Skokie, p 59

  • Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291(3):171–180

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249(1–3):85–101. doi:10.1016/S0048-9697(99)00513-6

    Article  CAS  Google Scholar 

  • Hsieh M, Philp RP, del Rio JC (2000) Characterization of high molecular weight biomarkers in crude oils. Org Geochem 31(12):1581–1588. doi:10.1016/S0146-6380(00)00085-1

    Article  CAS  Google Scholar 

  • Jariyasopit N (2013) The atmospheric chemistry of particulate-bound polycyclic aromatic hydrocarbons: concentration, prediction, laboratory studies, and mutagenicity, PhD dissertation thesis, Oregon State University, p 198

  • Jolibois B, Guerbet M (2005) Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat Res 65(2):151–162

    Article  Google Scholar 

  • Kfoury A, Ledoux F, El Khoury B, El Nakkat H, Nouali H, Cazier F, Courcot D, Abi Aad E, Aboukaïs A (2009) A study of the inorganic chemical composition of atmospheric particulate matter in the region of Chekka, North Lebanon. Leban Sci J 10:3–16

    CAS  Google Scholar 

  • Kim KH, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143. doi:10.1016/j.envint.2014.10.005

    Article  CAS  Google Scholar 

  • Kobrossi R, Hashisho Z, El-Fadel M (2000) A case study on the economic benefits of reducing emissions from the cement industry. In: Brebbia CA, Power H, Longhurst JWS (eds) Wessex Institue of Technology WIT Press. Air Pollut VIII 42:211–220. doi:10.2495/AIR000211

  • Koçak M, Mihalopoulos N, Kubilay N (2007) Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos Environ 41(34):7351–7368. doi:10.1016/j.atmosenv.2007.05.011

    Article  Google Scholar 

  • Kubátová A, Steckler TS, Gallagher JR, Hawthorne SB, Picklo MJ (2004) Toxicity of wide-range polarity fractions from wood smoke and diesel exhaust particulate obtained using hot pressurized water. Environ Toxicol Chem SETAC 23(9):2243–2250

    Article  Google Scholar 

  • Ledoux F, Courcot L, Courcot D, Aboukaïs A, Puskaric E (2006) A summer and winter apportionment of particulate matter at urban and rural areas in northern France. Atmos Res 82(3–4):633–642. doi:10.1016/j.atmosres.2006.02.019

    Article  CAS  Google Scholar 

  • Lepers C, Dergham M, Armand L, Billet S, Verdin A, Andre V, Sichel F (2014) Mutagenicity and clastogenicity of native airborne particulate matter samples collected under industrial, urban or rural influence. Toxicol In Vitro 28(5):866–874. doi:10.1016/j.tiv.2014.03.011

    Article  CAS  Google Scholar 

  • Levin DE, Hollstein M, Christman MF, Schwiers EA, Ames BN (1982) A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A 79:7445–7449

    Article  CAS  Google Scholar 

  • Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res Rev Mutat Res 636(1–3):95–133. doi:10.1016/j.mrrev.2007.08.003

    Article  CAS  Google Scholar 

  • Loomis D, Huang W, Chen G (2014) The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer 33(4):189–196. doi:10.5732/cjc.014.10028

    Article  CAS  Google Scholar 

  • Luria M, Lifschitz B, Peleg M (1989) Particulate sulfate levels at a rural site in Israel. J Atmos Chem 8(3):241–250. doi:10.1007/BF00051496

    Article  CAS  Google Scholar 

  • Maeda T, Nakamura R, Kadokami K, Ogawa HI (2007) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem SETAC 26(2):237–241

    Article  CAS  Google Scholar 

  • Mamane Y, Perrino C, Yossef O, Catrambone M (2008) Source characterization of fine and coarse particles at the East Mediterranean coast. Atmos Environ 42(24):6114–6130. doi:10.1016/j.atmosenv.2008.02.045

    Article  CAS  Google Scholar 

  • Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG (2002) Gas–particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36(25):4023–4035. doi:10.1016/S1352-2310(02)00362-X

    Article  CAS  Google Scholar 

  • Martellini T, Giannoni M, Lepri L, Katsoyiannis A, Cincinelli A (2012) One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ Pollut 164:252–258. doi:10.1016/j.envpol.2011.12.040

  • Masclet P, Mouvier G, Nikolaou K (1986) Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos Environ 20(3):439–446. doi:10.1016/0004-6981(86)90083-1

    Article  CAS  Google Scholar 

  • Massoud R, Shihadeh AL, Roumié M, Youness M, Gerard J, Saliba N, Zaarour R, Abboud M, Farah W, Saliba NA (2011) Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmos Res 101:893–901

  • McDaniels AE, Reyes AL, Wymer LJ, Rankin CC, Stelma GN (1990) Comparison of the Salmonella (Ames) test, umu tests, and the SOS Chromotests for detecting genotoxins. Environ Mol Mutagen 16(3):204–215

    Article  CAS  Google Scholar 

  • Mersch-Sundermann V, Mochayedi S, Kevekordes S (1992) Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37. Mutat res 278(1):1–9

    Article  CAS  Google Scholar 

  • MoE/UNDP/ECODIT (2011) State and trends of the Lebanese Environment. Retrieved from http://www.moe.gov.lb/The-Ministry/Reports/State-Of-the-Environment-Report-2010.aspx?lang=en-us

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  • Mousavi Z, Zarandi SM, Jozi SA, Khorasani N (2014) Assessment of particulate matter (PM) emitted by cement industry: a case study in Shahroud. Res J Environ Sci 8(3):155–160. doi:10.3923/rjes.2014.155.160

    Article  CAS  Google Scholar 

  • Mues A, Manders A, Schaap M, van Ulft LH, van Meijgaard E, Builtjes P (2013) Differences in particulate matter concentrations between urban and rural regions under current and changing climate conditions. Atmos Environ 80:232–247. doi:10.1016/j.atmosenv.2013.07.049

    Article  CAS  Google Scholar 

  • Nasser Z, Salameh P, Dakik H, Elias E, Abou Abbas L, Levesque A (2015) Outdoor air pollution and cardiovascular diseases in Lebanon: a case-control study. J Environ Public Health 2015:e810846. doi:10.1155/2015/810846

    Article  Google Scholar 

  • OECD (1997) OECD Guideline for testing of chemicals, Bacterial Reverse Mutation Test n° 471, 11p. Retrieved from https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf

  • Pekey B, Bozkurt ZB, Pekey H, Doğan G, Zararsiz A, Efe N, Tuncel G (2010) Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air 20(2):112–125. doi:10.1111/j.1600-0668.2009.00628.x

    Article  CAS  Google Scholar 

  • Piekarska K, Zaciera M, Czarny A, Zaczyńska E (2011) Application of short-term tests in assessment of atmospheric air pollution. Environ Prot Eng 37(2):85–98

    CAS  Google Scholar 

  • Pope CA III, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun M (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure–response relationship. Circulation 120:941–948

    Article  CAS  Google Scholar 

  • Puxbaum H, Gomiscek B, Kalina M, Bauer H, Salam A, Stopper S, Preining O, Hauck H (2004) A dual site study of PM2.5 and PM10 aerosol chemistry in the larger region of Vienna, Austria. Atmos Environ 38(24):3949–3958. doi:10.1016/j.atmosenv.2003.12.043

    Article  CAS  Google Scholar 

  • Quillardet P, de Bellecombe C, Hofnung M (1985) The SOS Chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res 147(3):79–95

    Article  CAS  Google Scholar 

  • Quillardet P, Hofnung M (1993) The SOS chromotest: a review. Mutat Res Rev Genet Toxicol 297:235–279

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921. doi:10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Rosenkranz HS, Mersch-Sundermann V, Klopman G (1999) SOS chromotest and mutagenicity in Salmonella: evidence for mechanistic differences. Mutat Res 431(1):31–38

    Article  CAS  Google Scholar 

  • Salameh P, Salame J, Khayat G, Akhdar A, Ziadeh C, Azizi S, Khoury F, Akiki Z, Nasser Z, Abou Abbass L, Saadeh D, Waked M (2012) Exposure to outdoor air pollution and chronic bronchitis in adults: a case-control study. Int J Occup Environ Med 3(4):165–177

    CAS  Google Scholar 

  • Saliba NA, Kouyoumdjian H, Roumié M (2007) Effect of local and long-range transport emissions on the elemental composition of PM10-2.5 and PM2.5 in Beirut. Atmos Environ 41:6497–6509

  • Saliba NA, El Jam F, El Tayar G, Obeid W, Roumie M (2010) Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmos Res 97(1–2):106–114. doi:10.1016/j.atmosres.2010.03.011

    Article  CAS  Google Scholar 

  • Sarnat JA, Moise T, Shpund J, Liu Y, Pachon JE, Qasrawi R, Abdeen Z, Brenner S, Nassar K, Saleh R, Schauer JJ (2010) Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities. Atmos Environ 44:2383–2392

    Article  CAS  Google Scholar 

  • Sbayti H, El-Fadel M, Kaysi I (2002) Effect of roadway network aggregation levels on modeling of traffic-induced emission inventories in Beirut. Transp Res D 7:163–173

    Article  Google Scholar 

  • Shahsavani A, Naddafi K, Jaafarzadeh Haghighifard N, Mesdaghinia A, Yunesian M, Nabizadeh R, Arhami M, Yarahmadi M, Sowlat MH, Ghani M, Jonidi Jafari A, Alimohamadi M, Motevalian SA, Soleimani Z (2012) Characterization of ionic composition of TSP and PM10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environ Monit Assess 184(11):6683–6692. doi:10.1007/s10661-011-2451-6

    Article  CAS  Google Scholar 

  • Shaka H, Saliba NA (2004) Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos Environ 38:523–531

    Article  CAS  Google Scholar 

  • Simoneit BRT (1986) Characterization of organic constituents in aerosols in relation to their rigin and transport: a review. Int J Environ Anal Chem 23(3):207–237. doi:10.1080/03067318608076446

    Article  CAS  Google Scholar 

  • Skarek M, Janošek J, Čupr P, Kohoutek J, Novotná-Rychetská A, Holoubek I (2007) Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environ Int 33(7):859–866. doi:10.1016/j.envint.2007.04.001

    Article  CAS  Google Scholar 

  • Smadi BMA, Al-Zboon KK, Shatnawi KM (2009) Assessment of air pollutants emissions from a cement plant: a case study in Jordan. Jordan J Civil Eng 3(3):265–282

  • Szigeti T, Mihucz VG, Óvári M, Baysal A, Atılgan S, Akman S, Záray G (2013) Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem J 107:86–94

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1–3):270–282. doi:10.1016/j.scitotenv.2008.06.007

    Article  CAS  Google Scholar 

  • Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118(6):847–855. doi:10.1289/ehp.0901623

    Article  Google Scholar 

  • Waked M, Salame J, Khayat G, Salameh P (2012) Correlates of COPD and chronic bronchitis in nonsmokers: data from a cross-sectional study. Int J Chron Obstruct Pulmon Dis 7:577–585. doi:10.2147/COPD.S35044

    Article  Google Scholar 

  • Wei S, Liu M, Huang B, Bi X, Sheng G, Fu J (2011) Polycyclic aromatic hydrocarbons with molecular weight 302 in PM2.5 at two industrial sites in South China. J Environ Monit 13(9):2568–2574. doi:10.1039/c1em10320b

    Article  CAS  Google Scholar 

  • WHO (2014) WHO | 7 million premature deaths annually linked to air pollution. Retrieved April 21, 2014, from http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/

  • WHO (2005) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Retrieved from http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf

  • Witt MLI, Meheran N, Mather TA, de Hoog JCM, Pyle DM (2010) Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK. Atmos Environ 44(12):1524–1538. doi:10.1016/j.atmosenv.2010.01.008

    Article  CAS  Google Scholar 

  • Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health. Part C, Environ Carcinog Ecotoxicol Rev 20(2):149–183. doi:10.1081/GNC-120016203

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515. doi:10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Montserrat Llagostera Casas (Universitat Autonoma de Barcelona, Spain) for kindly providing us with Escherichia coli PQ37 strain, Dr. Veronique André (University of Caen, Normandy, EA 4651 ABTE) for kindly providing us Salmonella typhimurium YG1041 strain, Dr. Lucie Courcot (ULCO, Laboratoire Océanologie et Géosciences) for her help in the SEM–EDX analysis, and Dr. Fabrice Cazier (ULCO, Centre Commun de Mesures) for his help in the determination of PAH compounds. Pamela Melki would also like to thank the “Agence Universitaire de la Francophonie,” “Balamand Research Grants Council,” and the “University of Littoral Côte d’Opale” for financial support. This work is a contribution to the CPER research project CLIMIBIO. The authors thank the French “Ministère de l'Enseignement Supérieur et de la Recherche,” the “Hauts de France” Region and the European Regional Development Fund (ERDF) for their financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Ledoux.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melki, P.N., Ledoux, F., Aouad, S. et al. Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environ Sci Pollut Res 24, 18782–18797 (2017). https://doi.org/10.1007/s11356-017-9389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9389-3

Keywords

Navigation