Skip to main content

Advertisement

Log in

Titanium dioxide-based sonophotocatalytic mineralization of bisphenol A and its intermediates

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, bisphenol A (BPA) removal by sonophotocatalysis coupled with commercially available titanium dioxide (TiO2, P25) was assessed in batch tests using energy-based advanced oxidation combining ultrasound (US) and ultraviolet (UV). The kinetics of BPA removal were systematically evaluated by changing operational parameters, such as US frequency and power, mechanical stirring speed, and temperature, but also comparison of single and coupled systems under the optimum US conditions (35 kHz, 50 W, 300 rpm stirring speed, and 20 °C). The combination of US/UV/P25 exhibited the highest BPA removal rate (28.0 × 10−3 min−1). In terms of the synergy index, the synergistic effect of sonophotocatalysis was found to be 2.2. This indicated that sonophotocatalysis has a considerably higher removal efficiency than sonocatalysis or photocatalysis. The removal of BPA was further investigated to identify BPA byproducts and intermediates using high-performance liquid chromatography–mass spectrometry. Five main intermediates were formed during sonophotocatalytic degradation, and complete removal of BPA and its intermediates was obtained after 3 h of operation. The degradation pathway of BPA by sonophotocatalysis was also elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    Article  CAS  Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    Article  CAS  Google Scholar 

  • Bejarano-Pérez NJ, Suárez-Herrera MF (2007) Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst. Ultrason Sonochem 14:589–595

    Article  Google Scholar 

  • Berberidou C, Poulios I, Xekoukoulotakis N, Mantzavinos D (2007) Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl. Catal. B 74:63–72

    Article  CAS  Google Scholar 

  • Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302

    Article  Google Scholar 

  • Capocelli M, Joyce E, Lancia A, Mason TJ, Musmarra D, Prisciandaro M (2012) Sonochemical degradation of estradiols: incidence of ultrasonic frequency. Chem Eng J 210:9–17

    Article  CAS  Google Scholar 

  • Cheng Z, Quan X, Xiong Y, Yang L, Huang Y (2012) Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor. Ultrason Sonochem 19:1027–1032

    Article  CAS  Google Scholar 

  • Davydov L, Reddy EP, France P, Smirniotis PG (2001) Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. Appl. Catal. B 32:95–105

    Article  CAS  Google Scholar 

  • Didenko YT, Nastich D, Pugach S, Polovinka Y, Kvochka V (1994) The effect of bulk solution temperature on the intensity and spectra of water sonoluminescence. Ultrasonics 32:71–76

    Article  CAS  Google Scholar 

  • Entezari MH, Kruus P (1996) Effect of frequency on sonochemical reactions II. Temperature and intensity effects Ultrason Sonochem 3:19–24

    Article  CAS  Google Scholar 

  • Entezari MH, Heshmati A, Sarafraz-yazdi A (2005) A combination of ultrasound and inorganic catalyst: removal of 2-chlorophenol from aqueous solution. Ultrason Sonochem 12:137–141

    Article  CAS  Google Scholar 

  • Fındık S, Gündüz G (2007) Sonolytic degradation of acetic acid in aqueous solutions. Ultrason Sonochem 14:157–162

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Capturing of bisphenol A photodecomposition intermediates by composite TiO2–zeolite sheets. Appl. Catal. B 46:453–462

    Article  CAS  Google Scholar 

  • Goel M, Hongqiang H, Mujumdar AS, Ray MB (2004) Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study. Water Res 38:4247–4261

    Article  CAS  Google Scholar 

  • Gonze E, Fourel L, Gonthier Y, Boldo P, Bernis A (1999) Wastewater pretreatment with ultrasonic irradiation to reduce toxicity. Chem Eng J 73:93–100

    Article  CAS  Google Scholar 

  • Gültekin I, Ince NH (2008) Ultrasonic destruction of bisphenol-A: the operating parameters. Ultrason Sonochem 15:524–529

    Article  Google Scholar 

  • Guo Z, Zheng Z, Zheng S, Hu W, Feng R (2005) Effect of various sono-oxidation parameters on the removal of aqueous 2, 4-dinitrophenol. Ultrason Sonochem 12:461–465

    Article  CAS  Google Scholar 

  • Guo C, Ge M, Liu L, Gao G, Feng Y, Wang Y (2009) Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environ. Sci. Technol. 44:419–425

    Article  Google Scholar 

  • Gutierrez M, Henglein A (1990) Chemical action of pulsed ultrasound: observation of an unprecedented intensity effect. J Phys Chem 94:3625–3628

    Article  CAS  Google Scholar 

  • Hanselmann W, Windhab E (1998) Flow characteristics and modelling of foam generation in a continuous rotor/stator mixer. J Food Eng 38:393–405

    Article  Google Scholar 

  • Hong C-S, Wang Y, Bush B (1998) Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere 36:1653–1667

    Article  CAS  Google Scholar 

  • Horikoshi S, Tokunaga A, Hidaka H, Serpone N (2004) Environmental remediation by an integrated microwave/UV illumination method: VII. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A J Photochem Photobiol A 162:33–40

    CAS  Google Scholar 

  • Joseph CG, Puma GL, Bono A, Krishnaiah D (2009) Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem 16:583–589

    Article  CAS  Google Scholar 

  • Jyothi K, Yesodharan S, Yesodharan E (2014) Ultrasound (US), ultraviolet light (UV) and combination (US+ UV) assisted semiconductor catalysed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ. Ultrason Sonochem 21:1787–1796

    Article  CAS  Google Scholar 

  • Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J. Photochem. Photobiol. A 163:419–424

    Article  CAS  Google Scholar 

  • Kang K, Jang M, Cui M, Qiu P, Na S, Son Y, Khim J (2015) Enhanced sonocatalytic treatment of ibuprofen by mechanical mixing and reusable magnetic core titanium dioxide. Chem Eng J 264:522–530

    Article  CAS  Google Scholar 

  • Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150

    Article  CAS  Google Scholar 

  • Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K (2004) Degradation of bisphenol a in water by the photo-Fenton reaction. J Photochem Photobiol A 162:297–305

    Article  CAS  Google Scholar 

  • Kavitha S, Palanisamy P (2011) Photocatalytic and sonophotocatalytic degradation of reactive red 120 using dye sensitized TiO2 under visible light. Int J Civil Environ Eng 3:1–6

    Google Scholar 

  • Kitajima M, Hatanaka S-i, Hayashi S (2006) Mechanism of O2 accelerated sonolysis of bisphenol A. Ultrasonics 44:e371–e373

    Article  Google Scholar 

  • Konstantinou IK, Sakkas VA, Albanis TA (2002) Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods. Water Res 36:2733–2742

    Article  CAS  Google Scholar 

  • Kormann C, Bahnemann DW, Hoffmann MR (1988) Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 22:798–806

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Alarcón DC, Maldonado MI, Fernández-Ibáñez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149

    Article  CAS  Google Scholar 

  • Monteagudo J, Durán A, San Martín I, García S (2014) Ultrasound-assisted homogeneous photocatalytic degradation of reactive blue 4 in aqueous solution. Appl Catal, B 152:59–67

    Article  Google Scholar 

  • Mosleh S, Rahimi M, Ghaedi M, Dashtian K (2016) Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study. Ultrason Sonochem 32:387–397

    Article  CAS  Google Scholar 

  • Neppolian B, Ciceri L, Bianchi CL, Grieser F, Ashokkumar M (2011) Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:135–139

    Article  CAS  Google Scholar 

  • Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Degradation of bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol. 35:2365–2368

    Article  CAS  Google Scholar 

  • Petrier C, Casadonte D (2001) The sonochemical degradation of aromatic and chloroaromatic contaminants. Adv Sonochem 6:91–109

    Article  CAS  Google Scholar 

  • Petrier C, Lamy M-F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520

    Article  CAS  Google Scholar 

  • Selli E (2002) Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye. PCCP 4:6123–6128

    Article  CAS  Google Scholar 

  • Sharma J, Mishra I, Kumar V (2015) Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and oxidation systems. J Environ Manag 156:266–275

    Article  CAS  Google Scholar 

  • Silva AM, Nouli E, Carmo-Apolinário ÂC, Xekoukoulotakis NP, Mantzavinos D (2007) Sonophotocatalytic/H2O2 degradation of phenolic compounds in agro-industrial effluents. Catal Today 124:232–239

    Article  CAS  Google Scholar 

  • Spivack J, Leib T, Lobos J (1994) Novel pathway for bacterial metabolism of bisphenol a. Rearrangements and stilbene cleavage in bisphenol A metabolism. J Biol Chem 269:7323–7329

    CAS  Google Scholar 

  • Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Suslick K, Doktycz S, Flint E (1990) On the origin of sonoluminescence and sonochemistry. Ultrasonics 28:280–290

    Article  CAS  Google Scholar 

  • Taghizadeh MT, Abdollahi R (2011) Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason Sonochem 18:149–157

    Article  CAS  Google Scholar 

  • Tang SK, Teng TT, Alkarkhi AF, Li Z (2012) Sonocatalytic degradation of rhodamine B in aqueous solution in the presence of TiO2 coated activated carbon. APCBEE Procedia 1:110–115

    Article  CAS  Google Scholar 

  • Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Salavati H (2008) Sonochemical and visible light induced photochemical and sonophotochemical degradation of dyes catalyzed by recoverable vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles. Ultrason Sonochem 15:815–822

    Article  CAS  Google Scholar 

  • Torres R, Abdelmalek F, Combet E, Pétrier C, Pulgarin C (2007a) A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters. J Hazard Mater 146:546–551

    Article  CAS  Google Scholar 

  • Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C (2007b) Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ Sci Technol 41:297–302

    Article  CAS  Google Scholar 

  • Torres RA, Nieto JI, Combet E, Pétrier C, Pulgarin C (2008a) Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Appl Catal B 80:168–175

    Article  CAS  Google Scholar 

  • Torres RA, Pétrier C, Combet E, Carrier M, Pulgarin C (2008b) Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products Ultrason Sonochem 15:605–611

    CAS  Google Scholar 

  • Tuziuti T, Yasui K, Iida Y, Taoda H, Koda S (2004) Effect of particle addition on sonochemical reaction. Ultrasonics 42:597–601

    Article  CAS  Google Scholar 

  • Wang Y, Hong C-S (2000) TiO2 mediated photomineralization of 2-chlorobiphenyl: the role of O2. Water Res 34:2791–2797

    Article  CAS  Google Scholar 

  • Wang J, Jiang Z, Zhang L, Kang P, Xie Y, Lv Y, Xu R, Zhang X (2009) Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrason Sonochem 16:225–231

    Article  Google Scholar 

  • Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H (2003) Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52:851–859

    Article  CAS  Google Scholar 

  • Wu T, Zivanovic S, Hayes DG, Weiss J (2008) Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. J Agric Food Chem 56:5112–5119

    Article  CAS  Google Scholar 

  • Zhang K, Zhang FJ, Chen ML, Oh WC (2011) Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts. Ultrason Sonochem 18:765–772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a University of Malaya Research Grant (RP019B-13AET) and partly supported by the Geo-Advanced Innovative Action Project (2012000550002) and funded by the Korea Ministry of Environment (MOE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaliza Ibrahim or Min Jang.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunasee, S., Wong, K.T., Lee, G. et al. Titanium dioxide-based sonophotocatalytic mineralization of bisphenol A and its intermediates. Environ Sci Pollut Res 24, 15488–15499 (2017). https://doi.org/10.1007/s11356-017-9124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9124-0

Keywords

Navigation