Skip to main content
Log in

Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO4) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Bachvarova V, Geissler A, Selenska-Pobell S (2009) Bacterial isolates cultured under anaerobic conditions from an opalinus clay sample from the Mont Terri Rock Laboratory. FZD-530 FZD-IRC Annual Report, 18.

  • Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge 543 pp.

    Google Scholar 

  • Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5897–5903

    Article  CAS  Google Scholar 

  • Brookshaw DR, Pattrick RAD, Lloyd JR, Vaughan DJ (2012) Microbial effects on mineral-radionuclide interactions and radionuclide solid-phase capture processes. Mineral Mag 76:777–806

    Article  CAS  Google Scholar 

  • Cho H-R, Jung EC, Park KK, Kim WH, Song K, Yun J-I (2010) Spectroscopic study on the mononuclear hydrolysis species of Pu(VI) under oxidation conditions. Radiochim Acta 98:765–770

    CAS  Google Scholar 

  • Francis AJ (2007) Microbial mobilization and immobilization of plutonium. J Alloys Compd 444-445:500–505

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ (2015) Microbial mobilization of plutonium and other actinides from contaminated soil. J Environ Radioact 150:277–285

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (2008) Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions. Environ Sci Technol 42:2355–2360

    Article  CAS  Google Scholar 

  • Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Chemical thermodynamics series volume 5: update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, Amsterdam 960 pp.

    Google Scholar 

  • Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H (2009) Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 75:3641–3647

    Article  CAS  Google Scholar 

  • Joseph C, Van Loon LR, Jakob A, Steudtner R, Schmeide K, Sachs S, Bernhard (2013) Diffusion of U(VI) in Opalinus Clay: influence of temperature and humic acid. Geochim Cosmochim Acta 75:352–367

    Google Scholar 

  • Keller C (1971) The chemistry of the transuranium elements, volume 3. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  • Kersting AB (2013) Plutonium transport in the environment. Inorg Chem 52:3533–3546

    Article  CAS  Google Scholar 

  • Kimber RL, Boothman C, Purdie P, Livens FR, Lloyd JR (2012) Biogeochemical behavior of plutonium during anoxic biostimulation of contaminated sediments. Mineral Mag 76:567–578

    Article  CAS  Google Scholar 

  • Klimmek S (2003) Charakterisierung der Biosorption von Schwermetallen an Algen. PhD thesis, Technische Universität Berlin, Berlin, Germany.

  • Kümmel R, Worch E (1990) Adsorption aus wässrigen Lösungen. Dt. Verl. für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Lemire RJ, Fuger J, Nithsche H, Potter P, Rand MH, Rydberg J, Spahiu K, Sullivan JC, Ullman W, Vitorge P, Wanner H (2001) Chemical thermodynamics series volume 4: chemical thermodynamics of neptunium and plutonium. Elsevier, Amsterdam 870 pp.

    Google Scholar 

  • Lloyd JR, Gadd GM (2011) The geomicrobiology of radionuclides. Geomicrobiol J 28:383–386

    Article  CAS  Google Scholar 

  • Lukšienė B, Druteikienė R, Pečiulytė D, Baltrūnas D, Remeikis V, Paškevičius A (2012) Effect of microorganisms on the plutonium oxidation states. Appl Radiat Isot 70:442–449

    Article  Google Scholar 

  • Lütke L, Moll H, Bachvarova V, Selenska-Pobell S, Bernhard G (2013) The U(VI) speciation influenced by a novel Paenibacillus isolate from Mont Terri Opalinus clay. Dalton Trans 42:6979–6988

    Article  Google Scholar 

  • Moll H, Merroun ML, Hennig C, Rossberg A, Selenska-Pobell S, Bernhard G (2006) The interaction of Desulfovibrio äspöensis DSM 10631T with plutonium. Radiochim Acta 94:815–824

    Article  CAS  Google Scholar 

  • Moll H, Lütke L, Bachvarova V, Cherkouk A, Selenska-Pobell S, Bernhard G (2014) Interactions of the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99 with curium(III) and europium(III). Geomicrobiol J 31:682–696

    Article  CAS  Google Scholar 

  • Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93:705–714

    Article  CAS  Google Scholar 

  • Neu MP, Boukhalfa H, Merroun ML (2010) Biomineralization and biotransformations of actinide materials. MRS Bull 35:849–857

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nitsche H, Lee SC, Gatti RC (1988) Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal. J Radioanal Nucl Chem 124:171–185

    Article  CAS  Google Scholar 

  • Nitsche H, Roberts K, Xi R, Prussin T, Becraft K, Mahamid IA, Silber HB, Carpenter SA, Gatti RC (1994) Long term plutonium solubility and speciation studies in a synthetic brine. Radiochim Acta 66(67):3–8

    Google Scholar 

  • Ockenden DW, Welch GA (1956) The preparation and properties of some plutonium compounds. Part V.* Colloidal quadrivalent plutonium. J Chem Soc:3358–3363

  • Ohnuki T, Yoshida T, Ozaki T, Kozai N, Sakamoto F, Nankawa T, Suzuki Y, Francis AJ (2009) Modeling of the interaction of Pu(VI) with the mixture of microorganism and clay. J Nucl Sci Technol 46:55–59

    Article  CAS  Google Scholar 

  • Ohnuki T, Kozai N, Sakamoto F, Ozaki T, Nankawa T, Suzuki Y, Francis AJ (2010) Association of actinides with microorganisms and clay: implications for radionuclide migration from waste-repository sites. Geomicrobiol J 27:225–230

    Article  CAS  Google Scholar 

  • Panak PJ, Nitsche H (2001) Interaction of aerobic soil bacteria with plutonium(VI). Radiochim Acta 89:499–504

    Article  CAS  Google Scholar 

  • Poulain S, Sergeant C, Simonoff M, Le Marrec C, Altmann S (2008) Microbial investigations in opalinus clay, an argillaceous formation under evaluation as a potential host rock for a radioactive waste repository. Geomicrobiol J 25:240–249

    Article  CAS  Google Scholar 

  • Reed DT, Pepper SE, Richmann MK, Smith G, Deo R, Rittmann BE (2007) Subsurface bio-mediated reduction of higher-valent uranium and plutonium. J Alloys Compd 444-445:376–382

    Article  CAS  Google Scholar 

  • Reilly SD, Neu MP (2006) Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. Inorg Chem 45:1839–1846

    Article  CAS  Google Scholar 

  • Renshaw JC, Law N, Geissler A, Livens FR, Lloyd JR (2009) Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium. Biogeochemistry 94:191–196

    Article  CAS  Google Scholar 

  • Roh C, Kang C, Lloyd JR (2015) Microbial bioremediation processes for radioactive waste. Korean J Chem Eng 32:1720–1726 and references therein

    Article  CAS  Google Scholar 

  • Swanson JS, Reed DT, Ams DA, Norden D, Simmons KA (2012) Status report on the microbial characterization of halite and groundwater samples from the WIPP. Los Alamos National Laboratory, p 1

  • Thury M, Bossart P (1999) The Mont Terri Rock Laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng Geol 52:347–359

    Article  Google Scholar 

  • Wilson RE, Hu Y-J, Nitsche H (2005) Detection and quantification of Pu(III, IV, V, and VI) using a 1.0-meter liquid core wave guide. Radiochim Acta 93:203–206

    Article  CAS  Google Scholar 

  • Wouters K, Moors H, Boven P, Leys N (2013) Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water. FEMS Microb Ecol 86:458–473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the BMWi for financial support (contract no. 02E10618 and 02E10971), Velina Bachvarova and Sonja Selenska-Pobell for isolation of the bacterial strain, Monika Dudek fo strain cultivation, and the BGR for providing the clay samples. Thanks to Laura Lütke for valuable help in strain characterization and many fruitful discussions as well as Susanne Sachs and Katja Schmeide for help in preparing the Pu-242 stock solution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Moll.

Additional information

Responsible editor: Georg Steinhauser

Electronic supplementary material

ESM 1

(DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moll, H., Cherkouk, A., Bok, F. et al. Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions. Environ Sci Pollut Res 24, 13497–13508 (2017). https://doi.org/10.1007/s11356-017-8969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8969-6

Keywords

Navigation