Skip to main content
Log in

Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) synthesized using a facile one-pot solvothermal method were employed as catalysts to activate peroxymonosulfate (PMS) with Orange G (OG) as the target pollutant. Effects of operating parameters including initial solution pH, catalyst dosage, PMS dosage, and water matrix components such as Cl, NO3 , CO3 2−, and humic acid were evaluated. A degradation efficiency of 93% was achieved in 15 min with 1 mM PMS and 0.2 g/L EDTA-CoFe2O4 catalyst, while only 57% of OG was degraded within 15 min in CoFe2O4/PMS system. The degradation of OG followed pseudo-first-order kinetics, and the apparent first-order date constant (k obs) for OG in EDTA-CoFe2O4/PMS and CoFe2O4/PMS system was determined to be 0.152 and 0.077 min−1, respectively. OG degradation by EDTA-CoFe2O4/PMS was enhanced with the increase of catalyst and PMS doses at respective range of 0.1–2.0 g/L and 0.5–10.0 mM. Higher efficiency of OG oxidation was observed within a wide pH range (3.0–9.0), implying the possibility of applying EDTA-CoFe2O4/PMS process under environmental realistic conditions. Humic acid (HA) at low concentration accelerated the removal of OG; however, a less apparent inhibitive effect was observed at HA addition of 10 mg/L. The k obs value was found to decrease slightly from 0.1601 to 0.1274, 0.1248, and 0.1152 min−1 with the addition of NO3 , CO3 2−, and Cl, respectively, but near-complete removal of OG could still be obtained after 15 min. Both of the sulfate radicals and hydroxyl radicals were produced in the reaction, and sulfate radicals were the dominant according to the scavenging tests and electron paramagnetic resonance (EPR) tests. Finally, a degradation mechanism was proposed, and the stability and reusability of the EDTA-CoFe2O4 were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  • Ahmad M, Teel AL, Watts RJ (2013) Mechanism of persulfate activation by phenols. Environ Sci Technol 47:5861–5871

    Article  Google Scholar 

  • Ahn Y-Y, Yun E-T, Seo J-W, Lee C, Kim SH, Kim J-H, Lee J (2016) Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds. Environ Sci Technol 50:10187–10197

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40:1000–1007

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Stathatos E, Dionysiou DD (2015) Heterogeneous activation of oxone using Co3O4. J Phys Chem B 109:13052–13055

    Article  Google Scholar 

  • Bikkarolla SK, Papakonstantinou P (2015) CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 281:243–251

    Article  CAS  Google Scholar 

  • Blesa MA, Borghi EB, Maroto AJG, Regazzoni AE (1984) Adsorption of EDTA and iron–EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA. J Colloid Inter Sci 98:295–305

    CAS  Google Scholar 

  • Bu L, Shi Z, Zhou S (2016b) Enhanced degradation of Orange G by permanganate with the employment of iron anode. Environ Sci Pollut Res 692:727–733

    Google Scholar 

  • Bu L, Zhou S, Shi Z, Deng L, Li G, Yi Q, Gao N (2016a) Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways. Environ Sci Pollut Res 23:2848–2855

    Article  CAS  Google Scholar 

  • Chen J, Qian Y, Liu H, Huang T (2016) Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO. Environ Sci Pollut Res 23:3824–3833

    Article  CAS  Google Scholar 

  • Chen X, Chen J, Qiao X, Wang D, Cai X (2008) Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using acid Orange 7 as a model compound. Appl Catal B Environ 80:116–121

    Article  CAS  Google Scholar 

  • Cole-Hamilton DJ (2003) Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299:1702–1706

    Article  CAS  Google Scholar 

  • Crittenden JC, Liu JB, Hand DW, Perram DL (1997) Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Res 31:429–438

    Article  CAS  Google Scholar 

  • Danechvar N, Ashassi-Sorkhabi H, Tizpar A (2003) Decolorization of orange II by electrocoagulation method method. Sep Purif Technol 31:153–162

    Article  Google Scholar 

  • Daneshvar N, Salari D, Aber D (2002) Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. J Hazard Mater 94:49–61

    Article  CAS  Google Scholar 

  • Deng L, Shi Z, Peng XX, Zhou SQ (2016) Magnetic calcinated cobalt ferrite/magnesium alumium hydrotalcite composite for enhanced adsorption of methyl orange. J Alloy Compd 688:101–112

    Article  CAS  Google Scholar 

  • Du JK, Bao JG, Liu Y, Ling HB, Zheng H, Kim SH, Dionysiou DD (2016) Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J Hazad Mater 320:150–159

    Article  CAS  Google Scholar 

  • Fan JH, Bin X, Ma LM (2015) EDTA enhanced degradation of 4-bromophenol by Al0-Fe0-O2 system. Chem Eng J 263:71–82

    Article  CAS  Google Scholar 

  • Fang G, Gao J, Dionysiou DD, Liu C, Zhou D (2013a) Activation of persulfate by quiniones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611

    Article  CAS  Google Scholar 

  • Fang GD, Dionysiou DD, Al-Abed SR, Zhou DM (2013b) Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Appl Catal B Environ 129:325–332

    Article  CAS  Google Scholar 

  • Feng Y, Liu J, Wu D, Zhou Z, Deng Y, Zhang T, Shih K (2015) Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem Eng J 280:514–524

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Vorshney S (2007) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312:292–296

    Article  CAS  Google Scholar 

  • Hazime R, Nguyen QH, Ferronato C, Salvador A, Jaber F, Chovelon JM (2014) Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Appl Catal B Environ 144:286–291

    Article  CAS  Google Scholar 

  • He J, Yang XF, Men B, Yun L, Wang DS (2015) EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe3O4: kinetics and interface and mechanism. J Mol Catal A-Chem 408:179–188

    Article  CAS  Google Scholar 

  • Huang WY, Brigante M, Wu F, Hanna K, Mailhot G (2013) Effect of ethylenediamine-N,N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation. Environ Sci Pollut Res 20:39–50

    Article  CAS  Google Scholar 

  • Huang XF, Xie BH, Li XC, Pan BC, Yuan SJ, Zhang YY, Shan C (2016) Enhanced HO production from ozonation activated by EDTA. Chem Eng J 288:562–568

    Article  CAS  Google Scholar 

  • Ji YF, Dong CG, Kong DY, Lu JH (2015) New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms. J Hazard Mater 285:491–500

    Article  CAS  Google Scholar 

  • Keenan CR, Sedlak DL (2008) Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:6936–6941

    Article  CAS  Google Scholar 

  • Kuosa M, Laari A, Solonen A, Haario H, Kallas J (2009) Multicomponent reaction kinetics for the ozonation of p-nitrophenol and its decomposition products under acidic conditions at constant pH. Chem Eng Sci 64:2332–2342

    Article  CAS  Google Scholar 

  • Li B, Li L, Lin K, Zhang W, Lu S, Luo Q (2013) Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason Sonochem 20:855–863

    Article  CAS  Google Scholar 

  • Li H, Wan J, Ma Y, Wang Y, Chen X, Guan Z (2016) Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: mechanism, performance, and stability. J Hazard Mater 318:154–163

    Article  CAS  Google Scholar 

  • Li YC, Bachas LG, Bhattacharyya D (2005) Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction. Environ Eng Sci 22:756–771

    Article  CAS  Google Scholar 

  • Liu J, Zhou J, Ding Z, Zhao Z, Xu X, Fang Z (2017) Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye. Ultrason Sonochem 34:953–959

    Article  CAS  Google Scholar 

  • Luo C, Ma J, Jiang J, Liu Y, Song Y, Yang Y, Guan Y, Wu D (2015) Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O8 2. Water Res 80:99–108

    Article  CAS  Google Scholar 

  • Ma Z, Zhu L, Lu X, Xing S, Wu Y, Gao Y (2014) Catalytic ozonation of p-nitrophenol over mesoporous Mn–Co–Fe oxide. Sep Purif Technol 133:357–364

    Article  CAS  Google Scholar 

  • Matta R, Hanna K, Kone T, Chiron S (2008) Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chem Eng J 144:453–538

    Article  CAS  Google Scholar 

  • Olmez-Hanci T, Arslan-Alaton I (2013) Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng J 224:10–16

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay AA (2006) Advanced oxidation process for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Ramya M, Karthika M, Selvakumar R, Raj B, Ravi KR (2017) A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation. J Alloy Compd 696:185–192

    Article  CAS  Google Scholar 

  • Ren YM, Dong Q, Feng J, Ma J, Wen Q, Zhang ML (2012) Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property fordegradation of di-n-butyl phthalate and convenient separation from water. J Colloid Interface Sci 382:90–96

    Article  CAS  Google Scholar 

  • Ren YM, Lin LQ, Ma J, Yang J, Feng J, Fan ZJ (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B Environ 165:572–578

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Vicente F (2009) Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process. J Hazard Mater 162:785–790

    Article  CAS  Google Scholar 

  • Roshani B, Leitner NK (2011) The influence of persulfate addition for the degradation of micropollutants by ionizing radiation. Chem Eng J 168:784–789

    Article  CAS  Google Scholar 

  • Shukla PR, Wang S, Sun H, Ang HM, Tadé M (2010) Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl Catal B Environ 100:529–534

    Article  CAS  Google Scholar 

  • Sun YF, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J Agric Food Chem 40:322–327

    Article  CAS  Google Scholar 

  • Tachiev G, Roth JA, Bowers R (2000) Kinetics of hydrogen peroxide decomposition with complexed and “free” iron catalysts. In J Chem Kinet 32:24–35

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Deng Y, Rong W, Zhou S, Lu N (2013) Degradation of antipyrine by heat activated persulfate. Sep Purif Technol 109:122–128

    Article  CAS  Google Scholar 

  • Wang N, Zhu LH, Lei M, She YB, Cao MJ, Tang HQ (2011) Ligand-induced drastic enhancement of catalytic activity of Nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catal 1:1193–1202

    Article  CAS  Google Scholar 

  • Wang YB, Zhao HY, Li MF, Fan JQ, Zhao GH (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B Environ 147:534–545

    Article  CAS  Google Scholar 

  • Xie RZ, Meng XY, Sun PZ, Niu JF, Jiang WJ, Bottomley L, Li D, Chen YS, Crittenden J (2017) Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: reaction kinetics and mass transfer impact. Appl Catal B Environ 203:515–525

    Article  CAS  Google Scholar 

  • Xing LL, Xie YB, Cao HB, Minakata D, Zhang Y, Crittenden JC (2014) Activated carbon-enhanced ozonation of oxalate attributed to HO radical dot oxidation in bulk solution and surface oxidation: effects of the type and number of basic sites. Chem Eng J 245:71–79

    Article  CAS  Google Scholar 

  • Xue XF, Hanna K, Despas C, Wu F, Deng NS (2009) Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J Mol Catal A-Chem 311:29–35

    Article  CAS  Google Scholar 

  • Yang Q, Choi H, Chen Y, Dionysiou DD (2008) Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: the effect of support, cobalt precursor, and UV radiation. Appl Catal B Environ 77:300–307

    Article  CAS  Google Scholar 

  • Yao Y, Chen H, Qin J, Wu G, Lian C, Zhang J, Wang S (2016) Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction. Water Res 101:281–291

    Article  CAS  Google Scholar 

  • Yuan SH, Fan Y, Zhang YC, Tong M, Liao P (2011) Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of rhodamine B. Environ Sci Technol 45:8514–8520

    Article  CAS  Google Scholar 

  • Zhang T, Chen Y, Wang Y, Roux JL, Yang Y, Croué J-P (2014) Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ Sci Technol 48:5868–15875

    Article  CAS  Google Scholar 

  • Zhang T, Li W, Croue JP (2011) Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation. Environ Sci Technol 45:9339–9346

    Article  CAS  Google Scholar 

  • Zhang T, Zhu H, Croue JP (2013) Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ Sci Technol 47:2784–2791

    Article  CAS  Google Scholar 

  • Zhao Z, Liu J, Cui F, Feng H, Zhang L (2012) One pot synthesis of tunable Fe3O4–MnO2 core-shell nanoplates and their applications for water purification. J Mater Chem 22:9052–9057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National “Twelfth Five-Year” Plan for Science & Technology Support (Grant No. 2012BAJ24B03). We are grateful for the technical help in adsorbent characterization from Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Shi.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Shi, Z., Zou, Z. et al. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G. Environ Sci Pollut Res 24, 11536–11548 (2017). https://doi.org/10.1007/s11356-017-8811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8811-1

Keywords

Navigation