Skip to main content
Log in

The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rapid development of nanotechnology raises questions assessment of their impact on living objects. In the present study, we evaluated the impact of nanoparticle (NP) CuO at concentrations ranging from 0.8 to 63.5 g/l in the test on wheat seedlings Triticum vulgare during 1–72 h. In the viability test (WST-test), cells were isolated from the roots of seedlings T. vulgare, 12 h not observed increase reductase activity after 24 h decreased rate of not more than 19% compared with the control. The number of dead cells in seedlings of T. vulgaris after exposure with CuO nanoparticles to the test with Evans blue increased by 5–15% compared to control. We observed that a significant increase in copper revenues leaves 4.5–8.9 times more in relation to the control and the roots—in 5–9.7 times. During the determined amount of active oxygen species, a significant proportional increase in the total pool of reactive oxygen species (ROS) in roots increased to 27.6% after exposure to NP CuO compared with the control. It is shown that in the introduction in medium, the NP CuO in the doses ranging from 3.2 to 63.5 g/l leads to DNA fragmentation and increases the fragments less than 3000 bp on 51.4–62.8%. The totality of our results influences nanoforms of copper oxide on the amount of ROS, and the viability of the genomic component of the cells shows different mechanisms of damage in the activation of a metabolic reaction, to determine the concentration of nano-CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  • Anastassopoulou J (2003) Metal–DNA interactions. J Mol Struct 651:19–26

    Article  Google Scholar 

  • Atha DH et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  Google Scholar 

  • Barbusiński K (2009) The full-scale treatment plant for decolourisation of dye wastewater. ACEE 2(2):89–94

    Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17

    Article  Google Scholar 

  • Berg MA, Coleman RS, Murphy CJ (2008) Nanoscale structure and dynamics of DNA. Phys Chem Chem Phys 10(9):1229–1242

    Article  CAS  Google Scholar 

  • Bonini MG, Rota C, Tomasi A, Mason RP (2006) The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40(6):968–975

    Article  CAS  Google Scholar 

  • Carpita NC (1982) Limiting diameters of pores and the surface structure of plant cell walls. Science 218(4574):813–814

    Article  CAS  Google Scholar 

  • Castro-Concha LA, Escobedo RM, Miranda-Ham ML (2006) Measurement of cell viability in in vitro cultures. Methods in Mol Bio 318:71–76

    Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162(2–3):1514–1521. doi:10.1016/j.jhazmat.2008.06.040

    Article  CAS  Google Scholar 

  • Deryabin DG et al (2015) A zeta potential value determines the aggregate’s size of penta-substituted [60] fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnology. doi:10.1186/s12951-015-0112-6

    Google Scholar 

  • Deryabina TD (2015) Adaptive response and tolerance limits of Triticum aestivum and Allium cepa L. to nanoparticles of copper and iron. Abstract. dissertation, Orenburg State Pedagogical University

  • Dimkpa CO et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1–15

    Article  Google Scholar 

  • Donald AH, Huanhua W, Elijah JP, Leveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2014) Correction to copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 48(20):12473

    Article  Google Scholar 

  • Dougherty GM, Rose KA, Tok JB-H, Pannu SS, Chuang FYS, Sha MY, Chakarova G, Penn SG (2008) The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 29(5):1131–1139

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49. doi:10.1002/tox.20610

    Article  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332

    Article  Google Scholar 

  • Feldblyum V (2013) «Nano» at the intersection of science: nano-objects, nanotechnology, nanofuture [electronic resource] Digital Library of Northern (Arctic) Federal University. MV Lomonosov. URL:http://narfu.ru/university/library/books/0706.pdf

  • Ganea GM, Kolic PE, El-Zahab B, Warner IM (2011) Ratiometric Coumarin—Neutral Red (CONER) Nanoprobe for Detection of Hydroxyl Radicals. Anal Chem 83(7):2576–2581

    Article  CAS  Google Scholar 

  • Gerald LN, Jamie RM (2006) Fluorescence detection of hydroxyl radicals. Radiat Phys Chem 75:473–478

    Article  Google Scholar 

  • Geremias R, Fattorini D, Favere VTD, Pedrosa RC (2010) Bioaccumulation and toxic effects of copper in common onion Allium cepa L. Chem Ecol 26(1):19–26. doi:10.1080/02757540903468144

    Article  CAS  Google Scholar 

  • Godymchuk AY, Savelyev GG, Zykov AP (2012) Ecology of nanomaterials. Tutorial. Moscow, Binom. Knowledge Laboratory

  • Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  Google Scholar 

  • Hackl EV, Kurnilova SV, Blago YP (2005) DNA structure transitions induced by divalent metal ions in aqueous solutions. Int J Biol Macromol 35(2–4):175–191

    Article  CAS  Google Scholar 

  • Held P (2015) An introduction to reactive oxygen species measurement of ROS in cells. BioTek Instruments 6:1–22

    Google Scholar 

  • Henle ES, Han Z, Teng N, Rai P, Luo Y, Lim S (1999) Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications. J Biol Chem 274:962–971

    Article  CAS  Google Scholar 

  • Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8:455–464

    Article  CAS  Google Scholar 

  • Horie M, Kato H, Fujita K, Endoh S, Iwahashi H (2012) In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol 25(3):605–619

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  Google Scholar 

  • Jakubowski W, Bartosz G (2000) 2,7-Dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757–760

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23(9):1279–1286

    Article  CAS  Google Scholar 

  • Korotkova AM, Davydova OK (2015) Effects of synthetic alkylresorcinols to topological changes in DNA, mediated by reactive oxygen species in a system in vitro. Vestnik of OSU 6:157–164

    Google Scholar 

  • Korotkova AM, Sizova EA, Lebedev SV, Zyazin NN (2015) Influence of NPs Ni° on the induction of oxidative damage in Triticum vulgare. Orient J Chem 31:137–145

    Article  Google Scholar 

  • Kosyan DB et al (2016) Toxic effect and mechanisms of nanoparticles on freshwater infusoria. Int J Geomate 11(23):2170–2176

    Google Scholar 

  • Koukalova B, Kovarik A, Fajkus J, Siroky J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414:289–292

    Article  CAS  Google Scholar 

  • Koul A, Gupta SP (2013) Phytomodulatory potential of lycopene from Lycopersicum esculentum against doxorubicin induced nephrotoxicity. Indian J Exp Biol 51:635–645

    CAS  Google Scholar 

  • Kurikka SA, Ulman A, Yan X, Yang N-L, Estourns JI (1996) DNA-based method for nationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  Google Scholar 

  • Lebedev SV, Korotkova AM, Osipova EA (2014) Influence of Fe° nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare Russian. J Plant Physiol 61(4):564–569

    CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    Article  CAS  Google Scholar 

  • Lin BS, Diao SQ, Li CH, Fang LJ, Qiao SC, Yu M (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res-CHN 15:138–140

    Article  CAS  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germinations and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Ma X, Lee JG, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants. Phytotoxicity, uptake and accumulation, science of the total environment 408:3053–3061

    Article  CAS  Google Scholar 

  • Makarov DV (2014) Forecast of development world market nanopowders. Vestnik KRAUNTS. Phys Math Sci 1(8):97–102

    Google Scholar 

  • Manevich Y, Held KD, Biaglow JE (1997) Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat Res 148:580–591

    Article  CAS  Google Scholar 

  • Masarovicova E, Kralova K (2013) Metal nanoparticles and plants. Ecol Chem Eng 20(1):9–22

    CAS  Google Scholar 

  • Metzler DM, Erdem A, Tseng YH, Huang CP (2012) Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type. J Nanotechnol . doi:10.1155/2012/23728412 p

    Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7:1–7

    Google Scholar 

  • Nair PM, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res Int 21:12709–127022

    Article  CAS  Google Scholar 

  • Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International J of Nanomedicine 5:983

    Article  CAS  Google Scholar 

  • Peng L, Wang B, Ren P (2005) Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B: Biointerfaces 45(2):108–111

    Article  CAS  Google Scholar 

  • Persson P, Nilsson N, Sjoherg S (1996) Structures and bonding of orthophosphate ions at the iron oxide-aqueous interface. J of Colloid interface Sci 177(1):263–275

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of development al responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  Google Scholar 

  • Pourrut B, Pohu AL, Pruvot C, Garçon G, Verdin A, Waterlot C, Bidar G, Shirali P, Douay F (2011) Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial part 2. Influence on plants. Sci Total Environ 409:4504–4510

    Article  CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants Nanotechnology and plant sciences: nanoparticles and their impact on plants. New York: Springer, 2015, 1–19 р. 10.1007/978-3-319-14502-0_1

  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282

    Article  CAS  Google Scholar 

  • Sirota T (2000) Method for determining the antioxidant activity of superoxide dismutase and chemical compounds / Sirota, T. // Patent number 2144674 (Russia)

  • Sizova E, Miroshnikov S, Yausheva E, Kosyan D (2015) Comparative characteristic of toxicity of nanoparticles using the test of bacterial bioluminescence. Biosciences biotechnology research Asia 12:361–368

    Article  Google Scholar 

  • Thul ST (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 7:1–7

    Google Scholar 

  • Urbanski NK, Beresewicz A (2000) Generation of hydroxyl radical initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. Acta Biochim Pol 47(4):951–962

    CAS  Google Scholar 

  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012a) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    Article  CAS  Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2:87–94

    Article  CAS  Google Scholar 

  • Wilson K, Uolker D (2015) Principles and methods of biochemistry and molecular biology. Binom, Moscow

    Google Scholar 

  • WST-8 patent no 2.251.850 (Canada), 6.063.587 (US) 0908453 (EP), 2757348 (JP) (2012) Measuring cell viability/cytotoxicity: cell counting Kit-8 [https://www.dojindo.com/Protocol/Cell_Proliferation_Protocol_Colorimetric.pdf]

  • Wu N, Fu L, Su M, Aslam M, Wung KC, Dravid VP (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nanolett 4(2):383–386

    Article  CAS  Google Scholar 

  • Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metal ions and adsorption of particles on seed surfaces. Pet Environ Biotechnol 3(4):126

    CAS  Google Scholar 

  • Yoon HJ, Kim CS, Lee KY, Yang SY (2010) Antioxidant activity of Rubus coreanus fruit extract: in comparison to green tea extract. Chonnam Medical J 46(3):148–155

    Article  CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622. doi:10.1021/nn302975u

    Article  CAS  Google Scholar 

  • Zuppini A, Navazio L, Mariani P (2004) Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J of Cell Science 117:2591–2598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research carried was out with the financial support of the Russian Ministry of Education as part of the base part of the state task to carry out research projects in the Orenburg State University (project no. 342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Aleksandrovna Gavrish.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkova, A.M., Lebedev, S.V. & Gavrish, I.A. The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare . Environ Sci Pollut Res 24, 10220–10233 (2017). https://doi.org/10.1007/s11356-017-8549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8549-9

Keywords

Navigation