Skip to main content

Advertisement

Log in

Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM10, PM0.95 was the dominant fraction (45%) followed by PM3–7.2 (20%), PM7.2–10 (15%), PM0.95–1.5 (10%), and PM1.5–3 (10%). All size fractions exceeded the ambient air quality standards of India for PM2.5. Annual average mass size distributions of ions were specific to size and ion(s); Ca2+, Mg2+, K+, NO3 , and Cl followed bimodal distribution while SO4 2− and NH4 + ions showed one mode in PM0.95. The concentrations of secondary WSII (NO3 , SO4 2−, and NH4 +) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH4 +and Ca2+were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM0.95 and PM3–7.2 and PM7.2–10. This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8–31% of the total PM0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are greatful to two anonymous reviewers for their critical comments and help in improving the quality of MS. The extra mural research project grants (24(0316)/11-EMR-II) received from the Council of Scientific and Industrial Research (CSIR), New Delhi, for carrying this work are duly acknowledged. PK and SK are also thankful to the CSIR and University Grants Commission, respectively, for research fellowship during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Yadav.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOCX 27kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, S. & Yadav, S. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi. Environ Sci Pollut Res 25, 6061–6078 (2018). https://doi.org/10.1007/s11356-017-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0954-6

Keywords

Navigation