Skip to main content
Log in

Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation

  • Advanced oxidation processes for water/wastewater treatment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The oxidation of imidazolium (1-hexyl-3-methylimidazolium chloride, HmimCl) and pyridinium (1-butyl-4-methylpyridinium chloride, BmpyrCl) ionic liquids (ILs) by Fenton’s reagent has been studied. Complete conversion was achieved for both ILs using the stoichiometric H2O2 dose at 70 °C, reaching final TOC conversion values around 45 and 55% for HmimCl and BmpyrCl, respectively. The decrease in hydrogen peroxide dose to substoichiometric concentrations (20–80% stoichiometric dose) caused a decrease in TOC conversion and COD removal and the appearance of hydroxylated oxidation by-products. Working at these substoichiometric H2O2 doses allowed the depiction of a possible degradation pathway for the oxidation of both imidazolium and pyridinium ILs. The first step of the oxidation process consisted in the hydroxylation of the ionic liquid by the attack of the ·OH radicals, followed by the ring-opening and the formation of short-chain organic acids, which could be partially oxidized up to CO2 and H2O. At H2O2 doses near stoichiometric values (80%), the resulting effluents showed non-ecotoxic behaviour and more biodegradable character (BOD5/COD ratio around 0.38 and 0.58 for HmimCl and BmpyrCl, respectively) due to the formation of short-chain organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors wish to thank the Spanish MINECO and Comunidad de Madrid for the financial support through the projects CTM2016-76564-R and S2013/MAE-2716, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Gomez-Herrero.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Herrero, E., Tobajas, M., Polo, A. et al. Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation. Environ Sci Pollut Res 25, 34930–34937 (2018). https://doi.org/10.1007/s11356-017-0867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0867-4

Keywords

Navigation