Skip to main content

Advertisement

Log in

Ecotoxicological efficiency of advanced ozonation processes with TiO2 and black light used in the degradation of carbamazepine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the ecotoxicological efficiency of two advanced ozonation processes (AOzPs), the catalytic ozonation (O3/TiO2) and the photocatalytic ozonation (O3/TiO2/black light), in the remotion of carbamazepine. The ecotoxicological efficiency was assessed through the use of lethal and sublethal assays with species Vibrio fischeri and Daphnia magna. Results demonstrated that the AOzPs presented an efficiency of carbamazepine removal higher than 99% (carbamazepine < 2 μg/L) after 12 min of treatment. Relatively to ecotoxicological evaluation, application of acute assay to V. fischeri and chronic assay to D. magna allowed us to highlight that these technologies may form some transformation products that induce toxicity in the bacteria and the crustacean, once these organisms exposed to the undiluted solutions (100%) showed a decrease in the bioluminescence (vibrio) and end up dying before and during the first reproduction (daphnia). Despite that, when the chronic results obtained with the diluted solutions (50 and 25%; important to assess a more realistic scenario considering the dilution factor at the environment) were analyzed, no mortality at the mothers was observed. Compared to a carbamazepine solution (200 μg/L), diluted solutions improved of the reproduction parameters, and no toxic effects in the juvenoid system and in the embryonic development were observed. Relatively to the ecdysteroid effect of a carbamazepine solution (200 μg/L), only the photocatalytic ozonation treatment was able to remove the action of the drug. These results highlight the importance of complementing chemical analysis with ecotoxicological bioassays to assess the best technology to improve the surface water and effluent quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agüera A, Pérez-Estrada LA, Ferrer I, Thurman EM, Malato S, Fernández-Alba AR (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J Mass Spectrom 40:908–915

    Article  CAS  Google Scholar 

  • Aguinaco A, Beltran FJ, Garcia-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Chem Eng J 189-190:275–282

    Article  CAS  Google Scholar 

  • Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C: Photochem Rev 6:264–273

    Article  CAS  Google Scholar 

  • Almeida A, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R (2014) Presence of the pharmaceutical drug carbamazepine in coastal systems: effects on bivalves. Aquat Toxicol 156:74–87

    Article  CAS  Google Scholar 

  • ASTM (American Society of Testing Materials) (1998) Standard practice for conducting toxicity tests with fishes, microinvertebrates and amphibians. E729-90. In: Annual Book of ASTM Standards. American Society of Testing Materials, Philadelphia. p 271–296

  • Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456

    Article  CAS  Google Scholar 

  • Bahlmann A, Carvalho JJ, Weller MG, Panne U, Schneider RJ (2012) Immunoassays as high-throughput tools: monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere 89:1278–1286

    Article  CAS  Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188–189:403–406

    Article  Google Scholar 

  • Barbosa MO, Moreira NF, Ribeiro AR, Pereira MF, Silva AM (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279

    Article  CAS  Google Scholar 

  • Beltran FJ, Rivas J, Acedo B (1999) Atrazine removal by ozonation processes in surface waters. J Environ Sci Health B 34(3):449–468

    Article  CAS  Google Scholar 

  • Beltran FJ (2004) Ozone reaction kinetics for water and wastewater systems. Lewis publishers, Boca Ratón

    Google Scholar 

  • Beltran FJ, Aguinaco A, Garcia-Araya JF, Oropesa AL (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42:3799–3808

    Article  CAS  Google Scholar 

  • Beltran FJ, Pocostales P, Alvarez P, Oropesa AL (2009a) Diclofenac removal from water with ozone and activated carbon. J Hazard Mater 163:768–776

    Article  CAS  Google Scholar 

  • Beltran FJ, Aguinaco A, García-Araya JF (2009b) Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Appl Catal B Environ 43:1359–1369

    CAS  Google Scholar 

  • Beltran FJ, Aguinaco A, García-Araya JF (2010) Kinetic modelling of TOC removal in the photocatalytic ozonation of diclofenac aqueous solutions. Appl Catal B Environ 100:289–298

    Article  CAS  Google Scholar 

  • Beltran FJ, Rey A (2017) Solar or UVA-visible photocatalytic ozonation of water contaminants. Molecules 22:1177–1205

    Article  CAS  Google Scholar 

  • Calisto V, Domingues MRM, Erny GL, Esteves VI (2011) Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res 45:1095–1104

    Article  CAS  Google Scholar 

  • Calza P, Medana C, Padovano E, Giancotti V, Baiocchi C (2012) Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 26:1687–1704

    Article  CAS  Google Scholar 

  • Candido JP, Andrade SJ, Fonseca AL, Silva FS, Silva MRA, Kondo MM (2016) Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ Sci Pollut Res 23:19911–19920

    Article  CAS  Google Scholar 

  • Cesaro A, Belgiorno V (2016) Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J 10(Suppl-1, M12):151–172

    Article  CAS  Google Scholar 

  • Chavez AM, Rey A, Beltrán FJ, Álvarez PM (2016) Solar photo-ozonation: a novel treatment method for the degradationof water pollutants. J Hazard Mater 317:36–43

    Article  CAS  Google Scholar 

  • Chiron S, Minero C, Vione D (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ Sci Technol 40:5977–5983

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Cokgor EU, Arslan-Alaton I, Karahan O, Dogruel S, Orhon D (2004) Biological treatability of raw and ozonated penicillin formulation effluent. J Hazard Mater 116:159–166

    Article  CAS  Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Toxicol in Vitro 17:525–532

    Google Scholar 

  • Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbonnanotubes/TiO2/SiO2 nanocomposites. Environ Res 137:176–184

    Article  CAS  Google Scholar 

  • Dietrich S, Florian P, Franz B, Christian L (2010) Single and combined toxicity of pharmaceuticals at environmentally realistic concentrations in Daphnia magna: a multigenerational study. Chemosphere 79:60–66

    Article  CAS  Google Scholar 

  • Deng J, Shao Y, Gao NY, Xia SJ, Tan CQ, Zhou SQ, Hu XH (2013) Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem Eng J 222:150–158

    Article  CAS  Google Scholar 

  • Doll TE, Frimmel FH (2005) Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal Today 101:195–202

    Article  CAS  Google Scholar 

  • Espejo A, Aguinaco A, Amat AM, Beltran FJ (2014a) Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. J Environ Sci Heal A Toxic Hazard Subst Environ Eng 49(4):410–421

    Article  CAS  Google Scholar 

  • Espejo A, Aguinaco A, Garcia-Araya JF, Beltran FJ (2014b) Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater. J. Environ. Sci. Heal A Toxic/Hazard Subst Environ Eng 49(9):1015–1022

    Article  CAS  Google Scholar 

  • Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB,Thurman ME (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) untreated drinking water sources. Sci Total Environ 402:201–216

  • Galus M, Kirischian N, Higgins S, Purdy J, Chow J, Rangaranjan S, Li H, Metcalfe C, Wilson JY (2013) Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquat Toxicol 132–133:200–211

    Article  CAS  Google Scholar 

  • Galus M, Rangarajan S, Lai A, Shaya L, Balshine S, Wilson JY (2014) Effects of chronic, parental pharmaceutical exposure on zebrafish (Danio rerio) offspring. Aquat Toxicol 151:124–134

    Article  CAS  Google Scholar 

  • Gimeno O, Garcia-Araya JF, Beltran FJ, Rivas FJ, Espejo A (2016) Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes. Chem Eng J 290:12–20

    Article  CAS  Google Scholar 

  • Gomes J, Costa R, Quinta-Ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283

    Article  CAS  Google Scholar 

  • Grčić I, Papić S, Mesec D, Koprivanac N, Vujević D (2014) The kinetics and efficiency of UV assisted advanced oxidation of various types of commercial organic dyes in water. J Photochem Photobiol Chem 273:49–58

    Article  CAS  Google Scholar 

  • Hassania A, Khataee A, Karaca S, Fathinia M (2017) Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: simultaneous determination and intermediates identification. J Environ Chem Eng 5:1964–1976

    Article  CAS  Google Scholar 

  • Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond Ser A 235:518–536

    Article  CAS  Google Scholar 

  • He Y, Sutton NB, Rijnaarts HHH, Langenhoff AAM (2016) Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl Catal B Environ 182:132–141

    Article  CAS  Google Scholar 

  • Henze M, Comeau Y (2008) Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London

  • Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76(21):7292–7298

    Article  CAS  Google Scholar 

  • Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024

    Article  CAS  Google Scholar 

  • Huber MM, Gobel A, Joss A, Hermann N, Loffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299

    Article  CAS  Google Scholar 

  • Hubner U, Seiwert B, Reemtsma T, Jekel M (2014) Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment e indications from column experiments. Water Res 49:34–43

    Article  CAS  Google Scholar 

  • Ibañez M, Gracia-Lor E, Bijlsma L, Morales E, Pastor L, Hernandez F (2013) Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. J Hazard Mater 260:389–398

    Article  CAS  Google Scholar 

  • Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28:353–414

    Article  CAS  Google Scholar 

  • International Organization for Standardisation (I.S.O.) 6341 (1996) Water quality-determination of the inhibition to the mobility of Daphnia magna Strauss (Cladocera, Crustacea)—acute toxicity test. British Standards Institute, London

    Google Scholar 

  • International Organization for Standardisation (I.S.O.) 11348-2 (1998) International standard for water quality: determination of inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test). Part 3: method using freeze-dried bacteria. International Organization for Standardisation, Geneve

  • Jelic A, Michael I, Achilleos A, Hapeshi E, Lambropoulou D, Perez S, Petrovice M, Fatta-Kassinos D, Barcelo D (2013) Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment. J Hazard Mater 263P:177–186

    Article  CAS  Google Scholar 

  • Jos A, Repetto G, Rios JC, Hazen MJ, Molero ML, Peso AD, Salguero M, Fernández-Freire P, Pérez-Martín JM, Cameán A (2003) Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicol in Vitro 17(5):525–532

    Article  CAS  Google Scholar 

  • Jović M, Manojlović D, Stanković D, Dojčinović B, Obradović B, Gašić U, Roglić G (2013) Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes. J Hazard Mater 260:1092–1099

    Article  CAS  Google Scholar 

  • Kamble SP, Sawant SB, Pangarkar VG (2007) Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiationin slurry photoreactor. J Hazard Mater 140(1–2):149–154

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42(13):3498–3518

    Article  CAS  Google Scholar 

  • Keen OS, Baik S, Linden KG, Aga DS, Love NG (2012) Enhanced biodegradation of carbamazepine after UV/hydrogen peroxide advanced oxidation. Environ Sci Technol 46:6222–6227

    Article  CAS  Google Scholar 

  • Kim I, Yamashita N, Tanaka H (2009) Photodegradation of pharmaceuticals and personal care products during UV and UV/hydrogen peroxide treatments. Chemosphere 77:518–525

    Article  CAS  Google Scholar 

  • Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E (2009) Fate of carbamazepine during water treatment. Environ Sci Technol 43:6256–6261

    Article  CAS  Google Scholar 

  • La Farre M, Perez S, Kantiani L, Barcelo D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Anal Chem 27:991–1007

    Article  CAS  Google Scholar 

  • Lamichhane K, Garcia SN, Huggett DB, De Angelis DL, La Point TW (2013) Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Arch Environ Contam Toxicol 64:427–438

    Article  CAS  Google Scholar 

  • Leitzke A, von Sonntag C (2009) Ozonolysis of unsaturated acids in aqueous solution: acrylic, methacrilic, fumaric and muconic acids. Ozone Sci Eng 31:301–308

    Article  CAS  Google Scholar 

  • Li H, Dong Z, Weng Q, Chang CC, Liu B (2015) Emerging pollutants—part I: occurrence, fate and transport. Water Environ Res 87(10):1849–1872

    Article  CAS  Google Scholar 

  • Li Z, Fenet H, Gomez E, Chiron S (2011) Transformation of the antiepileptic drug oxcarbazepine upon different water disinfection processes. Water Res 45:1587–1596

    Article  CAS  Google Scholar 

  • Li W, Nanaboinab V, Zhoua Q, Korshin GV (2012) Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Res 46:403–412

    Article  CAS  Google Scholar 

  • Lürling M, Sargant E, Roessink I (2006) Life-history consequences for Daphnia pulex exposed to pharmaceutical carbamazepine. Environ Toxicol 21(2):172–180

    Article  CAS  Google Scholar 

  • Malato S, Fernandez-Ibañez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  • Masschelein W, Denis M, Ledent R (1977) Spectrophotometric determination of residual hydrogen peroxide. Water Sew Works 8:69–72

    Google Scholar 

  • Marquez G, Rodríguez EM, Maldonado MI, Álvarez PM (2014) Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Sep Purif Technol 136:18–26

    Article  CAS  Google Scholar 

  • Martinez C, Canle LM, Fernandez MI, Santaballa JA, Faria J (2011) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbonnanotubes–anatase composites. Appl Catal B-Environ 102:563–571

    Article  CAS  Google Scholar 

  • McDowell DC, Huber MM, Wagner M, Von Gunten U, Ternes TA (2005) Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. Environ Sci Technol 39:8014–8022

    Article  CAS  Google Scholar 

  • Meinertz JR, Greseth SL, Gaikowski MP, Schmidt LJ (2008) Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system. Sci Total Environment 392:225–232

    Article  CAS  Google Scholar 

  • Mena E, Rey A, Acedo B, Beltrán FJ, Malato S (2012) On ozone-photocatalysis synergism in black-light induced reactions: oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis. Chem Eng J 204–206:131–140

  • Miralles-Cuevas S, Audino F, Oller I, Sanchez-Moreno R, Sanchez-Perez JA, Malato S (2014) Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Separ Purif Tech 122:515–522

    Article  CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol 202:53–154

    CAS  Google Scholar 

  • Mvula E, von Sonntag C (2003) Ozonolysis of phenols in aqueous solution. Organic. Biomol Chem 1:1749–1756

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Cooperation and Development) (2004) Daphnia sp., Acute Immobilization Test. In: OECD Guidelines for Testing of Chemicals N° 202. Organization for Economic Cooperation and Development, Paris

  • OECD (Organization for Economic Cooperation and Development) (2012) Daphnia magna, reproduction test. In: OECD guidelines for testing of chemicals N° 211. Organization for Economic Cooperation and Development, Paris

  • Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A:Chem 216:179–182

    Article  CAS  Google Scholar 

  • Oropesa AL, Floro AM, Palma P (2016) Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ Sci Pollut Res 23(17):17311–17321

    Article  CAS  Google Scholar 

  • Parkhurst B, Bradshaw A, Forte J, Wright G (1981) The chronic toxicity to Daphnia magna of acridine, a representative azaarene present in synthetic fossil fuel products and wastewaters. Environ Pollut Ser A 24:21–30

    Article  CAS  Google Scholar 

  • Quero-Pastor MJ, Garrido-Perez MC, Acevedo A, Quiroga JM (2014) Ozonation of ibuprofen: a degradation and toxicity study. Sci Total Environ 466–467:957–964

    Article  CAS  Google Scholar 

  • Quiñones DH, Álvarez PM, Rey A, Beltrán FJ (2015) Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study. Sep Purif Technol 149:132–139

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43:4070–4078

    Article  CAS  Google Scholar 

  • Rivas J, Rodríguez E, Beltrán FJ, García-Araya JF, Alvarez P (2001) Homogenous catalyzed ozonation of simazine. Effect of Mn(II) and Fe(II). J Environ Sci Health B 36(3):317–330

    Article  CAS  Google Scholar 

  • Rodríguez EM, Alvarez PM, Rivas FJ, Beltrán FJ (2004) Wet peroxide degradation of atrazine. Chemosphere 54(1):71–78

    Article  CAS  Google Scholar 

  • Rodriguez EM, Fernandez G, Alvarez PM, Beltran FJ (2012) TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water. Water Res 46:152–166

    Article  CAS  Google Scholar 

  • Rozas O, Vidal C, Baeza C, Jardim WF, Rossner A, Mansilla HD (2016) Organic micropollutants (OMPs) in natural waters: oxidation by UV/hydrogen peroxide treatment and toxicity assessment. Water Res 98:109–118

    Article  CAS  Google Scholar 

  • Ruzicka K, Zessner M, Blaschke AP, Fenz R, Clara M, Kroiss H (2011) Evaluating the success of sewer reconstruction by using carbamazepine as anthropogenic marker in groundwater. Water Sci Technol 63(4):727–732

    Article  CAS  Google Scholar 

  • Sanchez M, Rivero MJ, Ortiz I (2011) Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Appl Catal B Environ 101(3–4:515–521

    Article  CAS  Google Scholar 

  • Sauvé S, Aboulfadl K, Dorner S, Payment P, Deschamps G, Prévost M (2012) Fecal coliforms, caffeine and carbamazepine in storm water collection systems in a large urban area. Chemosphere 86:118–123

    Article  CAS  Google Scholar 

  • Sousa MA, Gonçalves C, Vilar VJP, Boaventura RAR, Alpendurada MF (2012) Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem Eng J 198(199):301–309

    Article  CAS  Google Scholar 

  • Staehelin J, Hoigné J (1982) Decomposition of ozone in water. Rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16:676–681

    Article  CAS  Google Scholar 

  • Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  • Sumiya E, Ogino O, Miyakawa H, Hiruta C, Toyota K, Miyagawa S, Iguchi T (2014) Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Front Zool 11:60

    Article  CAS  Google Scholar 

  • Suri RP, Nayak M, Devaiah U, Helmig E (2007) Ultrasound assisted destruction of estrogen hormones in aqueous solution: effect of power dendity, power intensity and reactor configuration. J Hazard Mater 146:472–478

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  • Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982

    Article  CAS  Google Scholar 

  • Technical Guidance Document 2003 Technical guidance document in support of the commission directive 93/67/CEE on risk assessment of new notified substances and the commission regulation (EC) 1488/94 on risk assessment for existing substances. European Chemical Bureau, Ispra. p 76

  • Tokumura M, Sugawara A, Raknuzzaman M, Habibullah-Al-Mamun M, Masunaga S (2016) Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere 159:317–325

    Article  CAS  Google Scholar 

  • Valcarcel Y, Gonzalez AS, Rodriguez-Gil JL, Gil A, Catala M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84(10):1336–1348

    Article  CAS  Google Scholar 

  • Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M (2004) Kinetic and chemical assessment of the UV/hydrogen peroxide treatment of antiepileptic drug carbamazepine. Chemosphere 54:497–505

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640

    Article  CAS  Google Scholar 

  • Xue W, Wu C, Xiao K, Huang X, Zhou H, Tsuno H, Tanaka H (2010) Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation. Water Res 44(20):5999–6010

    Article  CAS  Google Scholar 

  • Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596-597:303–320

    Article  CAS  Google Scholar 

  • Zhang T, Oyama T, Horikoshi S, Zhao J, Serpone N, Hidaka H (2003) Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives. Appl Catal B Environ 42(1):13–24

    Article  CAS  Google Scholar 

  • Zhang Y, Geissen S, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  • Zhang W, Zhang M, Lin K, Sun W, Xiong B, Guo M, Cui X, Fu R (2012) Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ Toxicol Pharmacol 33(2):344–352

    Article  CAS  Google Scholar 

  • Zhou S, Xia Y, Li T, Yao T, Shi Z, Zhu S, Gao N (2016) Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products. Environ Sci Pollut Res 23:16448–16455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support given to Oropesa AL by Ministerio de Educación, Cultura y Deporte (Spain) within the Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 through a post-doctoral research grant (CAS15-00049). Also, F.J. Beltrán thanks the economic support of Mineco and Feder Funds given through CTQ2015/64944R project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lourdes Oropesa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oropesa, A.L., Beltrán, F.J., Floro, A.M. et al. Ecotoxicological efficiency of advanced ozonation processes with TiO2 and black light used in the degradation of carbamazepine. Environ Sci Pollut Res 25, 1670–1682 (2018). https://doi.org/10.1007/s11356-017-0602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0602-1

Keywords

Navigation