Skip to main content
Log in

Sources of sulphate minerals in limestone cave—a possible evidence of anthropogenic activity: a case study in Črna Jama Cave (Slovenia)

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the caves, the formation of cave minerals is a consequence of a variety of chemical reactions, some of them also due to human activity. There are many caves in Slovenia, but sulphate minerals are not very often reported and analysed. In this study, the presence of sulphate minerals is detected by SEM/EDS analysis of speleothems from Črna Jama, a cave near Kočevje (southern Slovenia). The cave is characterised by its dark, almost black colour on cave walls, floor and speleothems. Anthropogenic influence in the cave is still visible, including the remains of a fireplace, some inscriptions on the walls and wooden containers. The analyses of some of the black-coated speleothems reveal the presence of calcium sulphate, confirmed by XRD as gypsum. Gypsum crystals are around 50 μm in size, and they occur in thin crusts. Additionally, some rare authigenic baryte crystals a few micrometres in size are detected. The sulphates δ34S value in gypsum found on dark coloured speleothems is + 10.4‰ Vienna Canyon Diablo Troilite (VCDT), while the sulphate δ34S of the bedrock is + 8.6‰ VCDT. The more likely source of sulphate ions is thus biomass burning rather than bedrock. Also, bedrock and biomass ash are a very probable source of calcium and barium. The highly probable pyrogenous origin of sulphates draws attention to human impact on cave mineralogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39(14):2607–2618

    Article  CAS  Google Scholar 

  • Broughton PL (1971) Origin and distribution of mineral species in limestone cave. Earth Sci J 5:36–43

    CAS  Google Scholar 

  • Buser S (1974) Osnovna geološka karta SFRJ. 1:100.000. Tolmač lista Ribnica: L 33-76. Zvezni geološki zavod. Beograd [in Slovenian]

  • Camuffo D, Del Monte M, Sabbioni C (1983) Origin and growth mechanisms of the sulphated crusts on urban limestone. Water Air Soil Pollut 19:351–359

    Article  CAS  Google Scholar 

  • Caplette JN, Schindler M, Kyser TK (2015) The black rock coatings in Rouyn-Noranda, Québec: fingerprints of historical smelter emissions and the local ore. Can J Earth Sci 52(11):952–965

    Article  CAS  Google Scholar 

  • Chang LLY, Howie RA, Zussman J (1998) Non-silicates: sulphates, carbonates, phosphates, halides. Rock-forming minerals, Volume 5B, Second Edition. The Geological society, London

  • Chang SJ, Jeong GY, Kim SJ (2008) The origin of black carbon on speleothems in tourist caves in South Korea: chemical characterization and source discrimination by radiocarbon measurement. Atmos Environ 42(8):1790–1800

    Article  CAS  Google Scholar 

  • Derda M, Chmielewski AG, Licki J (2006) Stable isotopes of sulphur in investigating pollution sources. Environ Prot Eng 32(3):63–68

    CAS  Google Scholar 

  • Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295

    Article  CAS  Google Scholar 

  • De Waele J, Forti P, Naseddu A (2013) Speleogenesis of an exhumed hydrothermal sulphuric acid karst in Cambrian carbonates (Mount San Giovanni, Sardinia). Earth Surf Process Landf 38(12):1369–1379

    Google Scholar 

  • Esch M, Hofmann D, Krebs G, Thierfelder C, Wünsch R, Maier R, Kuzel M, Schosnig M, Groeneveld KO (1996) Elemental composition of different types of wood. Nucl Instrum Methods Phys Res, Sect B 109(110):328–331

    Article  Google Scholar 

  • Galdenzi S, Maruoka T (2003) Gypsum deposits in the Frasassi Caves, Central Italy. J Cave Karst Stud 65:111–125

    CAS  Google Scholar 

  • Giurgiu A, Tămaş T (2013) Mineralogical data on bat guano deposits from three Romanian caves. Studia UBB. Geologia 58(2):13–18

    Article  Google Scholar 

  • Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and x-ray microanalysis, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Hill CA (1982) Origin of black deposits in caves. National Speleological Society Bulletin 44:15–19

    CAS  Google Scholar 

  • Hill C, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society, Huntsville

    Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423

    Article  CAS  Google Scholar 

  • Hornak M, Stepišnik U (2008) Prispevek k razumevanju zgodovinske poselitve južnega dela Ribniške Male gore. Dela 30:39–49 [in Slovenian]

    Article  Google Scholar 

  • Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Angkor monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes. J Archaeol Sci 33:1541–1551

    Article  Google Scholar 

  • Jeong GY, Kim SJ, Chang SJ (2003) Black carbon pollution of speleothems by fine urban aerosols in tourist caves. Am Mineral 88:1872–1878

    Article  CAS  Google Scholar 

  • Karltun E, Saarsalmi A, Ingerslev M, Mandre M, Andersson S, Gaitnieks T, Ozolinčius R, Varnagiryte-Kabasinskiene I (2008) Wood ash recycling—possibilities and risks. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of Forest biomass for energy. A synthesis with focus on the Baltic and Nordic region. Springer, Dordrecht, pp 79–108

    Chapter  Google Scholar 

  • Knapp BA, Insam H (2011) Recycling of biomass ashes: current technologies and future research needs. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Heidelberg, pp 1–16

    Google Scholar 

  • Kranjc N, Piškur M, Klun J, Premrl T, Piškur B, Robek R, Mihelič M, Sinjur I (2009) Lesna goriva: drva in lesni sekanci: proizvodnja, standardi kakovosti in trgovanje. Gozdarski inštitut Slovenije, Ljubljana [in Slovenian]

    Google Scholar 

  • Krause HR, Coplen TB (1997) Reporting of relative sulfur isotope-ratio data (technical report). Pure Appl Chem 69:293–295

    Article  Google Scholar 

  • Lal Gauri K, Holdren GC Jr (1981) Pollutant effects on stone monuments. Environ Sci Technol 15:386–390

    Article  Google Scholar 

  • Lee CCW, Savarino J, Cachier H, Thiemens MH (2002) Sulfur (32S, 33S, 34S, 36S) and oxygen (16O, 17O, 18O) isotopic ratios of primary sulfate produced from combustion processes. Tellus 54B:193–200

    Article  CAS  Google Scholar 

  • Mihevc A (1992) Gypsum in the caves Kubik and Tajna jama. Acta carsol XXI:175–183

  • Onac BP (2005). Minerals. In: Culver DC, White WB (eds) Encyclopedia of caves Academic Press, New York, pp 371–378

  • Onac BP, Forti P (2011a) Minerogenetic mechanisms occurring in the cave environment: an overview. Int J Speleol 40:79–98

    Article  Google Scholar 

  • Onac BP, Forti P (2011b) State of the art and challenges in cave minerals studies. Studia UBB. Geologia 56(1):33–42

    Article  Google Scholar 

  • Onac BP, Vereş DŞ (2003) Sequence of secondary phosphates deposition in a karst environment: evidence from Magurici Cave (Romania). Eur J Mineral 15:741–745

    Article  CAS  Google Scholar 

  • Onac BP, Wynn JG, Sumrall JB (2011) Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chem Geol 288:105–114

    Article  CAS  Google Scholar 

  • Otoničar B, Gostinčar P, Gabrovšek F. (eds) (2013a) 21th International Karstological School “Classical Karst”, Hypogene speleogenesis (between theory and reality…), guide book and abstracts. Karst Research Institute, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Postojna

  • Otoničar B, Tyc A, Sznober N (2013b) Mravljetovo Brezno v Gošarjevih Rupah Cave: dissolution of dedolomite. In: Otoničar B, Gostinčar P, Gabrovšek F (eds) 21th International Karstological School “Classical Karst”, Hypogene Speleogenesis (between theory and reality...), guide book and abstracts, Karst Research Institute, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Postojna, pp 15–18

    Google Scholar 

  • Instruments O (2006) INCA energy operator manual. Oxford Instruments Analytical Ltd., High Wycombe

    Google Scholar 

  • Pagliara A, De Waele J, Forti P, Galli E, Rossi A (2010) Speleothems and speleogenesis of the hypogenic Santa Barbara cave system (south-west Sardinia, Italy). Acta Carsol 39(3):551–564

    Article  Google Scholar 

  • Piccini L, De Waele J, Galli E, Polyak VJ, Bernasconi SM, Asmerom Y (2015) Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy). Geomorphology 229:134–143

    Article  Google Scholar 

  • Plan L, Tschegg C, De Waele J, Spötl C (2012) Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology 169–170:45–54

    Article  Google Scholar 

  • Pogson RE, Osborne RAL, Colchester DM, Cendón DI (2011) Sulfate and phosphate speleothems at Jenolan caves, New South Wales, Australia. Acta Carsol 40:239–254

    Article  Google Scholar 

  • Puchelt H, Blum N (1989) Geochemische Aspekte der Bildung des Gipsvorkommens der Kraushöhle/Steiermark. Oberrheinische Geol Abh 35:87–99

    Google Scholar 

  • Querol X, Alastuey A, Lopez Soler A, Mantilla E, Plana F (1996) Mineral composition of atmospheric particulates around a large coal-fired power station. Atmos Environ 30(21):3557–3572

    Article  CAS  Google Scholar 

  • Sabbioni C (1995) Contribution of atmospheric deposition to the formation of damage layers. Sci Total Environ 167:49–55

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C (1995) Reactivity of the aliphatic humic moiety in analytical pyrolysis. Org Geochem 23(10):955–961

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C, Hermosin B (1999) Thermally assisted hydrolysis and methylation of the black deposit coating the ceiling and walls of Cueva del Encajero, Quesada, Spain. J Anal Appl Pyrolysis 49(1–2):349–357

    Article  CAS  Google Scholar 

  • Salvarina I, Yohannes E, Siemers BM, Koselj K (2013) Advantages of using fecal samples for stable isotope analysis in bats: evidence from a triple isotopic experiment. Rapid Commun Mass Spectrom 27:1945–1953

    Article  CAS  Google Scholar 

  • Sauro F, Tisato N, De Waele J, Bernasconi SM, Bontognali TRR, Galli E (2014) Source and genesis of sulphate and phosphate–sulphate minerals in a quartz-sandstone cave environment. Sedimentology 61:143–1451

    Article  CAS  Google Scholar 

  • Seal RRII, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Reviews in mineralogy and geochemistry, 40. Mineralogical Society of America, Washington D.C., pp 541–602

    Google Scholar 

  • Sýkorová I, Havelcová M, Zeman A, Trejtnarová H (2011) Carbon air pollution reflected in deposits on chosen building materials of Prague Castle. Sci Total Environ 409:4606–4611

    Article  CAS  Google Scholar 

  • Skobe S, Zupančič N, Miler M, Šebela S, Torkar S, Grčman H (2014) Antropogeni vpliv v dveh zgodovinsko obiskanih jamah?. In Rožič B, Verbovšek T, Vrabec M (eds) 4. Slovenski geološki kongres, Ankaran, 8.–10. 10. 2014, Povzetki in ekskurzije/Abstracts and field trips. NTF, Ljubljana, p 65 [in Slovenian]

    Google Scholar 

  • Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118

    Article  Google Scholar 

  • Šebela S, Miler M, Skobe S, Torkar S, Zupančič N (2015) Characterization of black deposits in karst caves, examples from Slovenia. Facies 61:1–13

    Article  Google Scholar 

  • Tisato N, Sauro F, Bernasconi SM, Bruijn RHC, De Waele J (2012) Hypogenic contribution to speleogenesis in a predominant epigenetic karst system: a case study from the Venetian Alps, Italy. Geomorphology 151–152:156–163

    Article  Google Scholar 

  • Urbanc J (1982) Kamniška jama. Naše jame, 23–24:2–34 [in Slovenian]

  • White WB (1961) Cave mineral studies, 1955–1960. National Speleological Society News 19:94

    Google Scholar 

  • White WB (1976) Cave minerals and speleothems. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic Press, London, pp 267–327

    Google Scholar 

  • White WB (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains. Environ Geol 30:46–58

    Article  CAS  Google Scholar 

  • Wynn PM, Fairchild IJ, Baker A, Baldini JUL, McDermott F (2008) Isotopic archives of sulphate in speleothems. Geochim Cosmochim Acta 72:2465–2477

    Article  CAS  Google Scholar 

  • Wynn PM, Borsato A, Baker A, Frisia S, Miorandi R, Fairchild IJ (2013) Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy. Biogeochemistry 114:255–267

    Article  CAS  Google Scholar 

  • Xie RK, Seip HM, Leinum JR, Winje T, Xiao JS (2005) Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Sci Tot Environ 343:261–272

    Article  CAS  Google Scholar 

  • Zupan Hajna N (2006) Sadrini kristali v kraški jami južno od Velenja. In Jeršek M (ed) Mineralna bogastva Slovenije. Scopolia. Suppl 3:216–218 [in Slovenian]

    Google Scholar 

  • Zupančič N, Miler M, Šebela S, Jarc S (2016) Application of scanning electron microscopy/energy-dispersive X-ray spectroscopy for characterization of detrital minerals in karst cave speleothems. Microsc Microanal 22:87–98

    Article  CAS  Google Scholar 

  • Zupančič N, Šebela S, Miler M (2011) Mineralogical and chemical characteristics of black coatings in Postojna cave system. Acta Carsol 40(2):307–317

    Article  Google Scholar 

Download references

Acknowledgements

A permit to cover the collection of all samples was issued by the Nova Gorica Unit of Slovenia’s National Institute for Nature Conservation (ZRSVN). The study was performed within the research programmes Mineral resources (P1-0025); Palaeontology and sedimentary geology (P1-0008); Karst Research (P6-0119); research project Source identification of solid pollutants in the environment on the basis of mineralogical, morphological and geochemical properties of particles (Z1-7187); research project Natural resources of karst show caves: a balance among protection, exploitation, and promotion (J7-7100); and IGCP Project 567 Earthquake Archaeology. We give many thanks to Dr. Sonja Lojen (Institute Jožef Stefan, Department of Environmental Sciences) for isotope analysis. We also thank anonymous reviewers for constructive remarks and suggestions that helped to significantly improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Jarc.

Additional information

Responsible editor: Michel Sablier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarc, S., Miler, M., Šebela, S. et al. Sources of sulphate minerals in limestone cave—a possible evidence of anthropogenic activity: a case study in Črna Jama Cave (Slovenia). Environ Sci Pollut Res 24, 26865–26873 (2017). https://doi.org/10.1007/s11356-017-0486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0486-0

Keywords

Navigation