Skip to main content
Log in

In situ remediation of contaminated marinesediment: an overview

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdallah E, Goncalves AA, Gagnon GA (2009) Oxygen release compound as a chemical treatment for nutrient rich estuary sediments and water. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(7):707–713

    Article  CAS  Google Scholar 

  • Alther G (2002a) Using organoclays to enhance carbon filtration. Waste Manag 22(5):507–513

    Article  CAS  Google Scholar 

  • Alther G (2002b) Organoclays remove organics and metals from water. In: Kostecki PT, Calabrese EJ, Dragun J (eds) Contaminated soils, vol 7. Amherst Scientific Publishers, Amherst, MA, pp. 223–231

    Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Arizzi Novelli A, Losso C, Libralato G, Tagliapietra D, Pantani C, Volpi Ghirardini A (2006) Is the 1:4 elutriation ratio reliable? Ecotoxicological comparison of four different sediment: water proportions. Ecotoxicol Environ Saf 65:306–313

    Article  Google Scholar 

  • Aulenta F, Tocca L, Verdini R, Reale P, Majone M (2011) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 45:8444–8451

    Article  CAS  Google Scholar 

  • Aulenta F, Pera A, Rossetti S, Petrangeli Papini M, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41(1):27–38

    Article  CAS  Google Scholar 

  • Beckingham B, Ghosh U (2011) Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments. Environ Sci Technol 45(24):10567–10574

    Article  CAS  Google Scholar 

  • Bellagamba M, Viggi CC, Ademollo N, Rossetti S, Aulenta F (2016) Electrolysis-driven bioremediation of crude oil-contaminated marine sediments. New Biotechnol. doi:10.1016/j.nbt.2016.03.003

    Google Scholar 

  • Brosillon S, Bancon-Montigny C, Mendret J (2015) Study of photocatalytic degradation of tributyltin, dibutylin and monobutyltin in water and marine sediments. Chemosphere 109:173–179

    Article  Google Scholar 

  • Chakraborty S, Bhattacharya T, Singh G, Maity JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf 100:61–68

    Article  CAS  Google Scholar 

  • Cho YM, Werner D, Choi Y, Luthy RG (2012) Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon. J Contam Hydrol 129:25–37

    Article  Google Scholar 

  • Cho YM, Smithenry DW, Ghosh U, Kennedy AJ, Millward RN, Bridges TS, Luthy RG (2007) Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness. Mar Environ Res 64:541–555

    Article  CAS  Google Scholar 

  • Cho YM, Ghosh U, Kennedy AJ, Grossman A, Ray G, Tomaszewski JE, Smithenry DW, Bridges TS, Luthy RG (2009) Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environ Sci Technol 43(10):3815–3823

    Article  CAS  Google Scholar 

  • Choi H, Agarwal S, Al-Abed SR (2009) Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept. Environ Sci Technol 43(2):488–493

    Article  CAS  Google Scholar 

  • Choi Y, Cho YM, Luthy RG (2014) In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. Column studies. Environ Sci Technol 48(3):1835–1842

    Article  CAS  Google Scholar 

  • Choi Y, Cho YM, Gala WR, Hoelen TP, Werner D, Luthy RG (2016) Decision-making framework for the application of in-situ activated carbon amendment to sediment. J Hazard Mater 306:184–192

    Article  CAS  Google Scholar 

  • Chun CL, Payne RB, Sowers KR, and May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152

  • Cornelissen G, Amstaetter K, Hauge A, Schaanning M, Beylich B, Gunnarsson JS, Breedveld GD, Oen AM, Eek E (2012) Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: physicochemical effects. Environ Sci Technol 46(21):12030–12037

    Article  CAS  Google Scholar 

  • Cornelissen G, Kruså ME, Breedveld GD, Eek E, Oen AM, Arp HP, Raymond C, Samuelsson G, Hedman JE, Stokland O, Gunnarsson JS (2011) Remediation of contaminated marine sediment using thin-layer capping with activated carbon--a field experiment in Trondheim harbor, Norway. Environ Sci Technol 45(14):6110–6116

    Article  CAS  Google Scholar 

  • Cornelissen G, Breedveld GD, Naes K, Oen AMP, Ruus A (2006a) Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: freely dissolved concentrations and activated carbon amendment. Environ Toxicol Chem 25:2349–2355

    Article  CAS  Google Scholar 

  • Cornelissen G, Breedveld GD, Kalaitzidis S, Christanis K, Kibsgaard A, Oen AMP (2006b) Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environ Sci Technol 40:1197–1203

    Article  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43(20):5243–5251

    Article  CAS  Google Scholar 

  • Eek E, Cornelissen G, Kibsgaard A, Breedveld GD (2008) Diffusion of PAH and PCB from contaminated sediments with and without mineral capping; measurement and modelling. Chemosphere 71(9):1629–1638

    Article  CAS  Google Scholar 

  • EPA (2009) Technology performance review: selecting and using solidification/stabilization treatment for site remediation. EPA/600/R-09/148.

  • EPA (1994) Assessment and Remediation of Contaminated Sediments (ARCS) Program. Remediation guidance document. Great Lakes National Program Office. EPA 905-R94-003. Chicago: EPA.

  • EPA (1993) Selecting remediation techniques for contaminated sediment. Office of Water. EPA-823-B93-001. Washington, D.C.: EPA.

  • Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59(10):1427–1437

    Article  CAS  Google Scholar 

  • Gardner K (2004) In-situ treatment of PCBs in marine and freshwater sediments using colloidal zero-valent iron. A final report submitted to the NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology. February 17. http://rfp.ciceet.unh.edu/display/report.php?chosen=51

  • Ghosh U, Luthy RG, Cornelissen G, Werner D, Menzie CA (2011) In-situ sorbent amendments: a new direction in contaminated sediment management. Environ Sci Technol 45:1163–1168

    Article  CAS  Google Scholar 

  • Gidley PT, Kwon S, Yakirevich A, Magar VS, Ghosh U (2012) Advection dominated transport of polycyclic aromatic hydrocarbons in amended sediment caps. Environ Sci Technol 46(9):5032–5039

    Article  CAS  Google Scholar 

  • Hahladakis J, Smaragdaki E, Vasilaki G, Gidarakos E (2013) Use of sediment quality guidelines and pollution indicators for the assessment of heavy metal and PAH contamination in Greek surficial sea and lake sediments. Environ Monit Assess 185:2843–2853

    Article  CAS  Google Scholar 

  • Hale SE, Elmquist M, Brändli R, Hartnik T, Jakob L, Henriksen T, Werner D, Cornelissen G (2012) Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial. Chemosphere 87(2):177–184

    Article  CAS  Google Scholar 

  • Hale SE, Kwon S, Ghosh U, Werner D (2010) Polychlorinated biphenyl sorption to activated carbon and the attenuation caused by sediment. G Nest J 12(3):318–326

    Google Scholar 

  • Hale SE, Werner D (2010) Modelling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon. Environ Sci Technol 44(9):3381–3387

    Article  CAS  Google Scholar 

  • Han Z, Sani B, Akkanen J, Abel S, Nybom I, Karapanagioti HK, Werner D (2015) A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J Hazard Mater 286:41–47

    Article  CAS  Google Scholar 

  • Himmelheber DW, Pennell KD, Hughes JB (2011) Evaluation of a laboratory-scale bioreactive in situ sediment cap for the treatment of organic contaminants. Water Res 45:5365–5374

    Article  CAS  Google Scholar 

  • Himmelheber DW, Thomas SH, Löffler FE, Taillefert MT, Hughes JB (2009) Microbial colonization of an in situ sediment cap and correlation to stratified redox zones. Environ Sci Technol 43:66–74

    Article  CAS  Google Scholar 

  • Hjartland T, Jersak J, Collins J, Soldal O (2013) Using carbon-enriched materials for capping contaminated sediments at the Kirkebukten Site in Bergen, Norway. In: Proceedings Seventh International Conference on Remediation of Contaminated Sediments, 4–7 February, Dallas (TX) USA. Battelle. C–060.

  • Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo J, Huckins J, Petty J (2004) Use of powdered coconut charcoal as a toxicity identification and evaluation manipulation for organic toxicants in marine sediments. Environ Toxicol Chem 23(9):2124–2131

    Article  CAS  Google Scholar 

  • Hurel C, Taneez M, Volpi Ghirardini A, Libralato G (2016) Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events. Environ Pollut. doi:10.1016/j.envpol.2016.09.072

  • Iannelli R, Masi M, Ceccarini A, Ostuni MB, Lageman R, Muntoni A, Spiga D, Polettini A, Marini A, Pomi R (2015) Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design. Electrochim Acta 181:146–159

    Article  CAS  Google Scholar 

  • Janssen EM, Choi Y, Luthy RG (2012) Assessment of nontoxic, secondary effects of sorbent amendment to sediments on the deposit-feeding organism Neanthes arenaceodentata. Environ Sci Technol 46(7):4134–4141

    Article  CAS  Google Scholar 

  • Johnston R, Kirtay V, Chadwick D, Rosen G, Guerrero J, Collins J, Ortega C, Webb R, May R, Germano J, Browning D, Beaver E, Wicklein M, Pittz J, Leisle D, Doyle L, Hsu L (2013) Installing an activated carbon sediment amendment at the Puget Sound Naval Shipyard and Intermediate Maintenance Facility, Bremerton, WA. In: Proceedings of the Seventh International Conference on Remediation of Contaminated Sediments, 4–7 February, Dallas (TX) USA. Battelle. B–024.

  • Jonker MTO, Suijkerbuijk MPW, Schmitt H, Sinnige TL (2009) Ecotoxicological effects of activated carbon addition to sediments. Environ Sci Technol 43(15):5959–5966

    Article  CAS  Google Scholar 

  • Josefsson S, Schaanning M, Samuelsson GS, Gunnarsson JS, Olofsson I, Eek E, Wiberg K (2012) Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests. Environ Sci Technol 46:3343–3351

    Article  CAS  Google Scholar 

  • Kadar E, Simmance F, Martin O, Voulvoulis N, Widdicombe S, Mitov S, Lead JR, Readman JW (2010) The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification. Environ Pollut 158(12):3490–3497

    Article  CAS  Google Scholar 

  • Kadar E, Lowe DM, Solé M, Fisher AS, Jha AN, Readman JW, Hutchinson TH (2009) Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills. Anal Bioanal Chem 396(2):657–666

    Article  Google Scholar 

  • Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7(8):e43983

    Article  CAS  Google Scholar 

  • Knox AS, Dixon KL, Paller MH, Reible DD, Roberts JJ, Petrisor IG (2008) Innovative in situ remediation of contaminated sediments for simultaneous control of contamination and erosion. Annual Report SRNL-RP-2008-01216.

  • Koelmans AA, Kaag K, Sneekes A, Peeters ET (2009) Triple domain in situ sorption modeling of organochlorine pesticides, polychlorobiphenyls, polyaromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in aquatic sediments. Environ Sci Technol 43(23):8847–8853

    Article  CAS  Google Scholar 

  • Krull M, Abessa DM, Hatje V, Barros F (2014) Integrated assessment of metal contamination in sediments from two tropical estuaries. Ecotoxicol Environ Saf 106:195–203

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  Google Scholar 

  • Li WW, Yu HQ (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33:1–12

    Article  Google Scholar 

  • Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692

    Article  CAS  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88

    Article  CAS  Google Scholar 

  • Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43

    Article  CAS  Google Scholar 

  • Libralato G, Volpi Ghirardini A, Francesco A (2010a) How toxic is toxic? A proposal for wastewater toxicity hazard assessment. Ecotoxicol Environ Saf 73(7):1602–1611

    Article  CAS  Google Scholar 

  • Libralato G, Volpi Ghirardini A, Avezzù F (2010b) Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. J Hazard Mater 176(1–3):535–539

    Article  CAS  Google Scholar 

  • Libralato G, Losso C, Arizzi Novelli A, Citron M, Della Sala S, Zanotto E, Cepak F, Volpi Ghirardini A (2008) Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment. Environ Pollut 156:644–650

    Article  CAS  Google Scholar 

  • Libralato G, Losso C, Avezzù F, Volpi Ghirardini A (2009) Influence of the salinity adjustment methods, salts and brine, on the toxicity of wastewater samples to mussel embryos. Environ Technol 30(1):85–91

    Article  CAS  Google Scholar 

  • Lofrano G, Libralato G, Alfieri A, Carotenuto M (2016) Metals and tributyltin sediment contamination along the Southeastern Tyrrhenian Sea coast. Chemosphere 144:399–407

    Article  CAS  Google Scholar 

  • Lundh T, Hansen T, Nordvik H (2013) Demonstrating in situ remedies for contaminated sediment in Norway: applicability to Sandefjord Harbor and beyond. In: Proceedings of the Seventh International Conference on Remediation of Contaminated Sediments, 4–7 February, Dallas (TX) USA. Battelle. C–031.

  • Magar VS, Wenning RJ (2006) The role of monitored natural recovery in sediment remediation. Integr. Environ. Assess. Manage 2:66–74

    CAS  Google Scholar 

  • Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater 137(1):267–276

    Article  CAS  Google Scholar 

  • Majone M, Verdini R, Aulenta F, Rossetti S, Tandoi V, Kalogerakis N, Agathos S, Puig S, Zanaroli G, Fava F (2015) In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnol 32(1):133–146

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Libralato G, Roméo M, Hurel C, Losso C, Volpi Ghirardini A, Marmier N (2010) Ecotoxicological evaluation of Mediterranean dredged sediment ports based on elutriates with oyster embryotoxicity tests after composting process. Water Res 44(6):1986–1994

    Article  CAS  Google Scholar 

  • Matturro B, Ubaldi C, Grenni P, Barra Caracciolo A, Rossetti S (2015) Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. Environ Sci Pollut Res 1–11.

  • Mayer-Pinto M, Underwood AJ, Tolhurst T, Coleman RA (2010) Effects of metals on aquatic assemblages: what do we really know? J Exp Mar Biol Ecol 391:1–9

    Article  CAS  Google Scholar 

  • McDonough KM, Murphy P, Olsta J, Zhu Y, Reible D, Lowry GV (2007) Development and placement of a sorbent-amended thin layer sediment cap in the Anacostia River. Soil Sediment Contam Int J 16:313–322

    Article  CAS  Google Scholar 

  • McLeod PB, Luoma SN, Luthy RG (2008) Biodynamic modeling of PCB uptake by Macoma balthica and Corbicula fluminea from sediment amended with activated carbon. Environ Sci Technol 42:484–490

    Article  CAS  Google Scholar 

  • McLeod PB, van den Heuvel-Greve MJ, Luoma SN, Luthy RG (2007) Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environ Toxicol Chem 26(5):980–987

    Article  CAS  Google Scholar 

  • Meynet P, Hale SE, Davenport RJ, Cornelissen G, Breedveld GD, Werner D (2012) Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ Sci Technol 46(9):5057–5066

    Article  CAS  Google Scholar 

  • Millward RN, Bridges TS, Ghosh U, Zimmerman JR, Luthy RG (2005) Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environ Sci Technol 39(8):2880–2887

    Article  CAS  Google Scholar 

  • Nikolaou A, Kostopoulou-Karadanelli M, Lofrano G, Meriç S (2009a) Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trends Anal Chem 28:653–664

    Article  CAS  Google Scholar 

  • Nikolaou A, Kostopoulou M, Lofrano G, Meriç S (2009b) Determination of PAHs in marine sediments: analytical methods and environmental concerns. G Nest J 11:391–405

    Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos TA, Rasteiro MG, Abrantes N, Gonçalves F, Soares AM, Duarte AC, Pereira R (2015) Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ Sci Pollut Res Int 22(17):13212–13224

    Article  CAS  Google Scholar 

  • NRC (National Research Council) (2007) Sediment dredging at superfund megasites: assessing the effectiveness. National Academies Press, Washington, DC

    Google Scholar 

  • Oen AM, Beckingham B, Ghosh U, Kruså ME, Luthy RG, Hartnik T, Henriksen T, Cornelissen G (2012) Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. Environ Sci Technol 46(2):810–817

    Article  CAS  Google Scholar 

  • Otero-González L, García-Saucedo C, Field JA, Sierra-Álvarez R (2013) Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere 93(6):1201–1206

    Article  Google Scholar 

  • Paller MH, Knox AS (2010) Amendments for the in situ remediation of contaminated sediments: evaluation of potential environmental impacts. Sci Total Environ 408(20):4894–4900

    Article  CAS  Google Scholar 

  • Patmont CR, Ghosh U, LaRosa P, Menzie CA, Luthy RG, Greenberg MS, Cornelissen G, Eek E, Collins J, Hull J, Hjartland T, Glaza E, Bleiler J, Quadrini J (2014) In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology. In press. Integr Environ Assess Manag 11(2):195–207

    Article  Google Scholar 

  • Robb AC, deGrood TJ, Weber R (2015) In situ stabilization/solidification (ISS): another tool for remediation of contaminated sediments. Presented at the Western Dredging Association, Midwest Chapter Meeting March 11–13, Milwaukee, Wisconsin

  • Röling WFM, van Verseveld HW (2002) Natural attenuation: what does the subsurface have in store? Biodegradation 13:53–64

    Article  Google Scholar 

  • Rosen G, Leather J, Kan J, Arias-Thode YM (2011) Ecotoxicological response of marine organisms to inorganic and organic sediment amendments in laboratory exposures. Ecotoxicol Environ Saf 74(7):1921–1930

    Article  CAS  Google Scholar 

  • Samuelsson GS, Hedman JE, Elmquist Kruså M, Gunnarsson JS, Cornelissen G (2015) Capping in situ with activated carbon in Trondheim harbor (Norway) reduces bioaccumulation of PCBs and PAHs in marine sediment fauna. Mar Environ Res 109:103–112

    Article  CAS  Google Scholar 

  • Scanferla P, Ferrari G, Pellay R, Volpi Ghirardini A, Zanetto G, Libralato G (2009) An innovative stabilization/solidification treatment for contaminated soil remediation: demonstration project results. J Soils Sediments 9:229–236

    Article  CAS  Google Scholar 

  • Shih YJ, Binh NT, Chen CW, Chen CF, Dong CD (2016) Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 150:294–303

    Article  CAS  Google Scholar 

  • SMOCS (2012) Sustainable management of contaminated sediments. Project No: Baltic Sea Region Programme Project No #39

  • Sun H, Xu X, Gao G, Zhang Z, Yin P (2010) A novel integrated active capping technique for the remediation of nitrobenzene-contaminated sediment. J Hazard Mater 182:184–190

    Article  CAS  Google Scholar 

  • To PC, Mariñas BJ, Snoeyink VL, Ng WJ (2008) Effect of pore-blocking background compounds on the kinetics of trace organic contaminant desorption from activated carbon. Environ Sci Technol 42(13):4825–4830

    Article  CAS  Google Scholar 

  • Tomaszewski JE, Werner D, Luthy RG (2007) Activated carbon amendment as a treatment for residual DDT in sediment from a superfund site in San Francisco Bay, Richmond, California, USA. Environ Toxicol Chem 26:2143–2150

    Article  CAS  Google Scholar 

  • USEPA, US Environmental Protection Agency (2005) Contaminated sediment remediation guidance for hazardous waste sites. EPA-540-R-05-012

  • USEPA, US Environmental Protection Agency (2013a) Use of amendments for in situ remediation at superfund sediment sites. Office of Superfund Remediation and Technology Innovation. OSWER Directive 9200.2–128FS. April. [cited 2014 April]. http://www.epa.gov/superfund/health/conmedia/sediment/pdfs/in_situ_AmendmentReportandAppendix_FinalApril2013.pdf

  • USEPA, US Environmental Protection Agency (2013b) Superfund remedial program review action plan. Washington DC. November. [cited 2014 April]. Available from: http://www.epa.gov/superfund/cleanup/pdfs/Final_SPR_Action_Plan-11_26_2013_(2).pdf

  • USEPA, US Environmental Protection Agency (2014) Technical resource document on monitored natural recovery. EPA/600/R-14/083

  • Van der Mei HC, Atema-Smit J, Jager D, Langworthy DE, Collias DI, Mitchell MD, Busscher HJ (2008) Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow. Biotechnol Bioeng 100(4):810–813

    Article  CAS  Google Scholar 

  • Viganò L (2000) Assessment of the toxicity of River Po sediments with Ceriodaphnia dubia. Aquat Toxicol 47(3):191–202

    Article  Google Scholar 

  • Wan JZ, Yuan SH, Chen J, Li TP, Lin L, XH L (2009) Solubility-enhanced electrokinetic movement of hexachlorobenzene in sediments: a comparison of cosolvent and cyclodextrin. J Hazard Mater 166:221–226

    Article  CAS  Google Scholar 

  • Wang L, Tsang DC, Poon CS (2015) Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere 122:257–264

    Article  CAS  Google Scholar 

  • Wang Q, Li Y, Wang C, Wu Y, Wang P (2014) Development of a novel multi-functional active membrane capping barrier for the remediation of nitrobenzene-contaminated sediment. J Hazard Mater 276:415–421

    Article  CAS  Google Scholar 

  • Wang YF, Tam NFY (2012) Natural attenuation of contaminated marine sediments from an old floating dock part II: changes of sediment microbial community structure and its relationship with environmental variables. Sci Total Environ 423:95–103

    Article  CAS  Google Scholar 

  • WDOE (Washington State Department of Ecology) (2012) Custom Plywood Interim Action: thin-layer capping pilot study, Anacortes, Washington. Work plan prepared by Hart Crowser, Inc. July. Available from: https://fortress.wa.gov/ecy/gsp/CleanupSiteDocuments.aspx?csid=4533

  • Wen-Wei L, Han-Qing Y (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33(1):1–12

    Article  Google Scholar 

  • Werner D, Higgins CP, Luthy RG (2005) The sequestration of PCBs in Lake Hartwell sediment with activated carbon. Water Res 39:2105–2113

    Article  CAS  Google Scholar 

  • Wessels Perelo L (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1):81–89

    Article  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32(1):1–15

    Article  CAS  Google Scholar 

  • Yu HY, Bao LJ, Liang Y, Zeng EY (2011) Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. Environ Sci Technol 45(12):5245–5252

    Article  CAS  Google Scholar 

  • Zimmerman JR, Werner D, Ghosh U, Millward RN, Bridges TS, Luthy RG (2005) Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments. Environ Toxicol Chem 24(7):1594–1601

    Article  CAS  Google Scholar 

  • Zimmerman JR, Ghosh U, Millward RN, Bridges TS, Luthy RG (2004) Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: physicochemical tests. Environ Sci Technol 38(20):5458–5464

    Article  CAS  Google Scholar 

  • Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266(1):195–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Cooperation Agreement between the Special Commissioner of the Italian Government for urgent measures of remediation and environmental requalification of Taranto area (South Italy) and the Technical University of Bari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Libralato.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lofrano, G., Libralato, G., Minetto, D. et al. In situ remediation of contaminated marinesediment: an overview. Environ Sci Pollut Res 24, 5189–5206 (2017). https://doi.org/10.1007/s11356-016-8281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8281-x

Keywords

Navigation