Skip to main content

Advertisement

Log in

Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The progress achieved with the use of volcanic ash for geopolymer synthesis has been critically reviewed in this paper. This consists of an overview of mineralogy and chemistry of volcanic ash. The role of chemical composition and mineral contents of volcanic ash on their reactivity during geopolymerization reaction and, consequently, mechanical properties have been accessed. An attempt has been made to establish a relationship between synthesis factors and final properties. A critical assessment of some synthesis conditions has been addressed and some practical recommendations given along with suggestions of future works that have to be done. All this has shown that there are still many works such as durability tests (carbonation, freeze-thaw, resistance, etc.), life cycle analysis, etc. that need to be done in order to satisfy both suitability and sustainability criteria for a large-scale or industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allahverdi A, Kani EN, Yazdanipour M (2011) Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceram—Silikaty 55:68–78

    CAS  Google Scholar 

  • Allahverdi A, Mehrpour K, Kani EN (2008a) Taftan pozzolan-based geopolymer cement. IUST Int J Eng Sci 19:1–5

    CAS  Google Scholar 

  • Allahverdi A, Mehrpour K, Najafikani E (2008b) Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceram—Silikaty 52:16–23

    CAS  Google Scholar 

  • Al-Zboon KK, Al-smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut. doi:10.1007/s11270-016-2937-5

    Google Scholar 

  • Balczá I, Korim T, Kovács A, Makó É (2016) Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars—comparative study. Ceram Int. doi:10.1016/j.ceramint.2016.06.182

    Google Scholar 

  • Barrie E, Cappuyns V, Vassilieva E et al (2015) Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from gold extraction in Ecuador. Appl Clay Sci 109–110:95–106. doi:10.1016/j.clay.2015.02.025

    Article  Google Scholar 

  • Bondar D (2009) Alkali activation of Iranian natural pozzolans for producing geopolymer cement and concrete. PhD thesis, University of Sheffield, UK

  • Bondar D, Lynsdale CJ, Milestone NB et al (2011a) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos 33:251–260. doi:10.1016/j.cemconcomp.2010.10.021

    Article  CAS  Google Scholar 

  • Bondar D, Lynsdale CJ, Milestone NB et al (2011b) Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr Build Mater 25:4065–4071. doi:10.1016/j.conbuildmat.2011.04.044

    Article  Google Scholar 

  • Bondar D, Lynsdale CJ, Milestone NB et al (2011c) Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr Build Mater 25:2906–2910. doi:10.1016/j.conbuildmat.2010.12.031

    Article  Google Scholar 

  • Bondar D, Lynsdale CJ, Milestone NB, et al. (2011d) Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater J 1–9

  • Bondar D, Lynsdale CJ, Milestone NB, Hassani N (2014) Sulfate resistance of alkali activated Pozzolans. Int J Concr Struct Mater 9:145–158. doi:10.1007/s40069-014-0093-0

    Article  Google Scholar 

  • Bondar D, Lynsdale CJ, Milestone NB, Hassani N (2012) Oxygen and chloride permeability of alkali-activated natural pozzolan concrete. ACI Mater J 109:53–61

    CAS  Google Scholar 

  • Cai G, Noguchi T, Degée H et al (2016) Volcano-related materials in concretes: a comprehensive review. Environ Sci Pollut Res 23:7220–7243. doi:10.1007/s11356-016-6161-z

    Article  CAS  Google Scholar 

  • Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656. doi:10.1007/BF01912193

    Article  CAS  Google Scholar 

  • Davidovits J (2011) Application of Ca-based geopolymer with blast furnace slag, a review. In Proceeding Second Int Slag Valoris Symp, Leuven, p 33–49

  • Davidovits J (2013) Geopolymer cement: a review. Saint-Quentin, France

    Google Scholar 

  • Desarnaud E, Desbarbieux T, Ando S, Prebay YP (2006) Les enjeux du développement durable au sein de l’ Industrie du Ciment°: réduction des émissions de CO2. Atelier Changement Climatique

  • Djobo JNY, Elimbi A, Dika Manga J, Djon Li Ndjock IB (2016a) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr Build Mater 113:673–681. doi:10.1016/j.conbuildmat.2016.03.104

    Article  Google Scholar 

  • Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016b) Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv 6:39106–39117. doi:10.1039/c6ra03667h

    Article  Google Scholar 

  • Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016c) Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J Mater Sci 51:10301–10317. doi:10.1007/s10853-016-0257-1

    Article  CAS  Google Scholar 

  • Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016d) Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr Build Mater 124:606–614. doi:10.1016/j.conbuildmat.2016.07.141

    Article  Google Scholar 

  • Djobo JNY, Tchadjié LN, Tchakoute HK et al (2014) Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J Asian Ceram Soc 2:387–398. doi:10.1016/j.jascer.2014.08.003

    Article  Google Scholar 

  • Djobo JNY, Tchakouté HK, Ranjbar N et al (2016e) Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: effect of synthesis conditions. J Am Ceram Soc 99:3159–3166. doi:10.1111/jace.14332

  • Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278. doi:10.1016/0012-821X(86)90078-6

    Article  CAS  Google Scholar 

  • Ghafoori N, Najimi M, Radke B (2016) Natural pozzolan-based geopolymers for sustainable construction. Environ Earth Sci 75:1110. doi:10.1007/s12665-016-5898-5

    Article  Google Scholar 

  • Kani EN, Allahverdi A (2009a) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci 44:3088–3097. doi:10.1007/s10853-009-3411-1

    Article  Google Scholar 

  • Kani EN, Allahverdi A (2009b) Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram—Silikaty 53:195–204

    CAS  Google Scholar 

  • Lemougna PN, Chinje Melo UF, Delplancke MP, Rahier H (2014) Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram Int 40:811–820. doi:10.1016/j.ceramint.2013.06.072

    Article  CAS  Google Scholar 

  • Lemougna PN, Chinje Melo UF, Delplancke MP, Rahier H (2013a) Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr Build Mater 48:278–286. doi:10.1016/j.conbuildmat.2013.06.089

    Article  Google Scholar 

  • Lemougna PN, MacKenzie KJD, Jameson GNL et al (2013b) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57 Fe Mössbauer spectroscopy study. J Mater Sci 48:5280–5286. doi:10.1007/s10853-013-7319-4

    Article  CAS  Google Scholar 

  • Lemougna PN, MacKenzie KJD, Melo UFC (2011) Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram Int 37:3011–3018. doi:10.1016/j.ceramint.2011.05.002

    Article  CAS  Google Scholar 

  • Leonelli C, Kamseu E, Boccaccini DN et al (2007) Volcanic ash as alternative raw materials for traditional vitrified ceramic products. Adv Appl Ceram 106:135–142. doi:10.1179/174367607X159329

    Article  CAS  Google Scholar 

  • Marti J, Heiken G (2005) Volcanoes and the environment. United States of America by Cambridge University Press, New York

    Book  Google Scholar 

  • Moon J, Bae S, Celik K et al (2014) Characterization of natural pozzolan-based geopolymeric binders. Cem Concr Compos 53:97–104. doi:10.1016/j.cemconcomp.2014.06.010

    Article  CAS  Google Scholar 

  • Nadoushan MJ, Ramezanianpour AA (2016) The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr Build Mater 111:337–347. doi:10.1016/j.conbuildmat.2016.02.086

    Article  Google Scholar 

  • Najafi Kani E, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34:25–33. doi:10.1016/j.cemconcomp.2011.07.007

    Article  CAS  Google Scholar 

  • Najafi Kani E, Allahverdi A, Provis JL (2016) Calorimetric study of geopolymer binders based on natural pozzolan. J Therm Anal Calorim In press. doi:10.1007/s10973-016-5850-7 Calorimetric

    Google Scholar 

  • Nakagawa M, Ohba T (2002) Minerals in volcanic ash 1: primary minerals and volcanic glass. Glob Environ Res 41–51

  • OHba T, Akagawa MN (2002) Minerals in volcanic ash 2: non-magmatic minerals. Glob Environ Res:53–59

  • Risdanareni P, Karjanto A, Khakim F (2016a) Mechanical properties of volcanic ash based geopolymer concrete. Mater Sci Forum 857:377–381. doi:10.4028/www.scientific.net/MSF.857.377

    Article  Google Scholar 

  • Risdanareni P, Karjanto A, Khakim F (2016b) Physical properties of volcanic ash based geopolymer concrete. Mater Sci Forum 841:1–6. doi:10.4028/www.scientific.net/MSF.841.1

    Article  Google Scholar 

  • Robayo RA, Mejia de Gutierrez R, Gordillo M (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater construcción 66:e077. doi:10.3989/mc.2016.03615

    Article  Google Scholar 

  • Robayo-Salazar RA, Mejía de Gutiérrez R, Puertas F (2016) Effect of metakaolin on natural volcanic pozzolan-based geopolymer cement. Appl Clay Sci In press. doi:10.1016/j.clay.2016.07.020

    Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39. doi:10.1016/j.jvolgeores.2009.01.010

    Article  CAS  Google Scholar 

  • Siddique R (2011) Effect of volcanic ash on the properties of cement paste and mortar. Resour Conserv Recycl 56:66–70. doi:10.1016/j.resconrec.2011.09.005

    Article  Google Scholar 

  • Takeda H, Hashimoto S, Kanie H et al (2014) Fabrication and characterization of hardened bodies from Japanese volcanic ash using geopolymerization. Ceram Int 40:4071–4076. doi:10.1016/j.ceramint.2013.08.061

    Article  CAS  Google Scholar 

  • Tchakouté HK, Elimbi A, Diffo Kenne BB et al (2013a) Synthesis of geopolymers from volcanic ash via the alkaline fusion method: effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram Int 39:269–276. doi:10.1016/j.ceramint.2012.06.021

    Article  Google Scholar 

  • Tchakouté HK, Elimbi A, Mbey JA et al (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymers products: a comparative study. Constr Build Mater 35:960–969. doi:10.1016/j.conbuildmat.2012.04.023

    Article  Google Scholar 

  • Tchakouté HK, Elimbi A, Yanne E, Djangang CN (2013b) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem Concr Compos 38:75–81. doi:10.1016/j.cemconcomp.2013.03.010

    Article  Google Scholar 

  • Tchakouté HK, Kong S, Djobo JNY et al (2015) A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceram Int 41:12568–12577. doi:10.1016/j.ceramint.2015.06.073

    Article  Google Scholar 

  • Tchakouté HK, Mbey JA, Elimbi A et al (2013c) Synthesis of volcanic ash-based geopolymer mortars by fusion method: effects of adding metakaolin to fused volcanic ash. Ceram Int 39:1613–1621. doi:10.1016/j.ceramint.2012.08.003

    Article  Google Scholar 

  • Vafaei M, Allahverdi A (2016) Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Constr Build Mater 114:290–296

    Article  Google Scholar 

  • Verdolotti L, Iannace S, Lavorgna M, Lamanna R (2008) Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci 43:865–873. doi:10.1007/s10853-007-2201-x

    Article  CAS  Google Scholar 

  • Yadollahi MM, Benli A, Demirboğa R (2015) The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Constr Build Mater 94:767–774. doi:10.1016/j.conbuildmat.2015.07.052

    Article  Google Scholar 

  • Yip CK, Lukey GC, Van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35:1688–1697. doi:10.1016/j.cemconres.2004.10.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jean Noël Yankwa Djobo is thankful to TWAS-CSIR for the financial support under 2014 TWAS-CSIR Sandwich Postgraduate Fellowship award FR number: 3240280439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Noël Yankwa Djobo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djobo, J.N.Y., Elimbi, A., Tchakouté, H.K. et al. Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environ Sci Pollut Res 24, 4433–4446 (2017). https://doi.org/10.1007/s11356-016-8230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8230-8

Keywords

Navigation